• Title/Summary/Keyword: Image Augmentation

Search Result 217, Processing Time 0.025 seconds

The Effect of Acoustic Fields Formed in Heat Transfer Process (음향장이 열전달 과정에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1603-1608
    • /
    • 2003
  • The Present Study reported on the experimental and numerical results of heat transfer in the acoustic fields induced by ultrasonic waves. The strong upwards flow called as acoustic streaming was visualized by a particle image velocimetry (P.I.V). in addition, the augmentation of heat transfer was experimentally investigated in the presence of acoustic streaming and was compared with the profiles of acoustic pressure calculated by the numerical analysis. Experimental and numerical studies clearly show that acoustic pressure variations are closely related to the augmentation of heat transfer.

  • PDF

Rubber O-ring defect detection system using K-fold cross validation and support vector machine (K-겹 교차 검증과 서포트 벡터 머신을 이용한 고무 오링결함 검출 시스템)

  • Lee, Yong Eun;Choi, Nak Joon;Byun, Young Hoo;Kim, Dae Won;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.1
    • /
    • pp.68-73
    • /
    • 2021
  • In this study, the detection of rubber o-ring defects was carried out using k-fold cross validation and Support Vector Machine (SVM) algorithm. The data process was carried out in 3 steps. First, we proceeded with a frame alignment to eliminate unnecessary regions in the learning and secondly, we applied gray-scale changes for computational reduction. Finally, data processing was carried out using image augmentation to prevent data overfitting. After processing data, SVM algorithm was used to obtain normal and defect detection accuracy. In addition, we applied the SVM algorithm through the k-fold cross validation method to compare the classification accuracy. As a result, we obtain results that show better performance by applying the k-fold cross validation method.

Implementation and Design of Bounding Box Image Augmentation GUI Program for expanding Object Detection Models' applicability (Object Detection Model 적용성 확대를 위한 BoundingBox 이미지 증강 GUI 프로그램 연구)

  • Jeon, Jin-young;Min, Youn A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.539-540
    • /
    • 2022
  • 본 논문에서는 Bounding Box가 포함된 증강 이미지 데이터셋을 손쉽게 생성할 수 있는 독립형 GUI 프로그램을 제안한다. 본 논문의 연구를 통하여 직관적인 마우스 클릭 동작만으로 적은 수의 이미지 파일과 annotation 파일로부터 필요한 만큼의 증강 이미지 데이터셋을 짧은 시간 내에 생성하고, 다양한 아키텍처의 학습용 이미지 데이터셋 증강에 적용할 수 있다.

  • PDF

Data Augmentation for Tomato Detection and Pose Estimation (토마토 위치 및 자세 추정을 위한 데이터 증대기법)

  • Jang, Minho;Hwang, Youngbae
    • Journal of Broadcast Engineering
    • /
    • v.27 no.1
    • /
    • pp.44-55
    • /
    • 2022
  • In order to automatically provide information on fruits in agricultural related broadcasting contents, instance image segmentation of target fruits is required. In addition, the information on the 3D pose of the corresponding fruit may be meaningfully used. This paper represents research that provides information about tomatoes in video content. A large amount of data is required to learn the instance segmentation, but it is difficult to obtain sufficient training data. Therefore, the training data is generated through a data augmentation technique based on a small amount of real images. Compared to the result using only the real images, it is shown that the detection performance is improved as a result of learning through the synthesized image created by separating the foreground and background. As a result of learning augmented images using images created using conventional image pre-processing techniques, it was shown that higher performance was obtained than synthetic images in which foreground and background were separated. To estimate the pose from the result of object detection, a point cloud was obtained using an RGB-D camera. Then, cylinder fitting based on least square minimization is performed, and the tomato pose is estimated through the axial direction of the cylinder. We show that the results of detection, instance image segmentation, and cylinder fitting of a target object effectively through various experiments.

Vector and Thickness Based Learning Augmentation Method for Efficiently Collecting Concrete Crack Images

  • Jong-Hyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.65-73
    • /
    • 2023
  • In this paper, we propose a data augmentation method based on CNN(Convolutional Neural Network) learning for efficiently obtaining concrete crack image datasets. Real concrete crack images are not only difficult to obtain due to their unstructured shape and complex patterns, but also may be exposed to dangerous situations when acquiring data. In this paper, we solve the problem of collecting datasets exposed to such situations efficiently in terms of cost and time by using vector and thickness-based data augmentation techniques. To demonstrate the effectiveness of the proposed method, experiments were conducted in various scenes using U-Net-based crack detection, and the performance was improved in all scenes when measured by IoU accuracy. When the concrete crack data was not augmented, the percentage of incorrect predictions was about 25%, but when the data was augmented by our method, the percentage of incorrect predictions was reduced to 3%.

Hard Example Generation by Novel View Synthesis for 3-D Pose Estimation (3차원 자세 추정 기법의 성능 향상을 위한 임의 시점 합성 기반의 고난도 예제 생성)

  • Minji Kim;Sungchan Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.9-17
    • /
    • 2024
  • It is widely recognized that for 3D human pose estimation (HPE), dataset acquisition is expensive and the effectiveness of augmentation techniques of conventional visual recognition tasks is limited. We address these difficulties by presenting a simple but effective method that augments input images in terms of viewpoints when training a 3D human pose estimation (HPE) model. Our intuition is that meaningful variants of the input images for HPE could be obtained by viewing a human instance in the images from an arbitrary viewpoint different from that in the original images. The core idea is to synthesize new images that have self-occlusion and thus are difficult to predict at different viewpoints even with the same pose of the original example. We incorporate this idea into the training procedure of the 3D HPE model as an augmentation stage of the input samples. We show that a strategy for augmenting the synthesized example should be carefully designed in terms of the frequency of performing the augmentation and the selection of viewpoints for synthesizing the samples. To this end, we propose a new metric to measure the prediction difficulty of input images for 3D HPE in terms of the distance between corresponding keypoints on both sides of a human body. Extensive exploration of the space of augmentation probability choices and example selection according to the proposed distance metric leads to a performance gain of up to 6.2% on Human3.6M, the well-known pose estimation dataset.

Occlusion-based Direct Volume Rendering for Computed Tomography Image

  • Jung, Younhyun
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2018
  • Direct volume rendering (DVR) is an important 3D visualization method for medical images as it depicts the full volumetric data. However, because DVR renders the whole volume, regions of interests (ROIs) such as a tumor that are embedded within the volume maybe occluded from view. Thus, conventional 2D cross-sectional views are still widely used, while the advantages of the DVR are often neglected. In this study, we propose a new visualization algorithm where we augment the 2D slice of interest (SOI) from an image volume with volumetric information derived from the DVR of the same volume. Our occlusion-based DVR augmentation for SOI (ODAS) uses the occlusion information derived from the voxels in front of the SOI to calculate a depth parameter that controls the amount of DVR visibility which is used to provide 3D spatial cues while not impairing the visibility of the SOI. We outline the capabilities of our ODAS and through a variety of computer tomography (CT) medical image examples, compare it to a conventional fusion of the SOI and the clipped DVR.

Hair Removal on Face Images using a Deep Neural Network (심층 신경망을 이용한 얼굴 영상에서의 헤어 영역 제거)

  • Lumentut, Jonathan Samuel;Lee, Jungwoo;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.163-165
    • /
    • 2019
  • The task of image denoising is gaining popularity in the computer vision research field. Its main objective of restoring the sharp image from given noisy input is demanded in all image processing procedure. In this work, we treat the process of residual hair removal on faces images similar to the task of image denoising. In particular, our method removes the residual hair that presents on the frontal or profile face images and in-paints it with the relevant skin color. To achieve this objective, we employ a deep neural network that able to perform both tasks in one time. Furthermore, simple technic of residual hair color augmentation is introduced to increase the number of training data. This approach is beneficial for improving the robustness of the network. Finally, we show that the experimental results demonstrate the superiority of our network in both quantitative and qualitative performances.

  • PDF

No-Reference Image Quality Assessment based on Quality Awareness Feature and Multi-task Training

  • Lai, Lijing;Chu, Jun;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • v.9 no.2
    • /
    • pp.75-86
    • /
    • 2022
  • The existing image quality assessment (IQA) datasets have a small number of samples. Some methods based on transfer learning or data augmentation cannot make good use of image quality-related features. A No Reference (NR)-IQA method based on multi-task training and quality awareness is proposed. First, single or multiple distortion types and levels are imposed on the original image, and different strategies are used to augment different types of distortion datasets. With the idea of weak supervision, we use the Full Reference (FR)-IQA methods to obtain the pseudo-score label of the generated image. Then, we combine the classification information of the distortion type, level, and the information of the image quality score. The ResNet50 network is trained in the pre-train stage on the augmented dataset to obtain more quality-aware pre-training weights. Finally, the fine-tuning stage training is performed on the target IQA dataset using the quality-aware weights to predicate the final prediction score. Various experiments designed on the synthetic distortions and authentic distortions datasets (LIVE, CSIQ, TID2013, LIVEC, KonIQ-10K) prove that the proposed method can utilize the image quality-related features better than the method using only single-task training. The extracted quality-aware features improve the accuracy of the model.

Rabbit maxillary sinus augmentation model with simultaneous implant placement: differential responses to the graft materials

  • Kim, Young-Sung;Kim, Su-Hwan;Kim, Kyoung-Hwa;Jhin, Min-Ju;Kim, Won-Kyung;Lee, Young-Kyoo;Seol, Yang-Jo;Lee, Yong-Moo
    • Journal of Periodontal and Implant Science
    • /
    • v.42 no.6
    • /
    • pp.204-211
    • /
    • 2012
  • Purpose: This study was performed to establish an experimental rabbit model for single-stage maxillary sinus augmentation with simultaneous implant placement. Methods: Twelve mature New Zealand white rabbits were used for the experiments. The rabbit maxillary sinuses were divided into 3 groups according to sinus augmentation materials: blood clot (BC), autogenous bone (AB), and bovine-derived hydroxyapatite (BHA). Small titanium implants were simultaneously placed in the animals during the sinus augmentation procedure. The rabbits were sacrificed 4 and 8 weeks after surgery and were observed histologically. Histomorphometric analyses using image analysis software were also performed to evaluate the parameters related to bone regeneration and implant-bone integration. Results: The BC group showed an evident collapse of the sinus membrane and limited new bone formation around the original sinus floor at 4 and 8 weeks. In the AB group, the sinus membrane was well retained above the implant apex, and new bone formation was significant at both examination periods. The BHA group also showed retention of the elevated sinus membrane above the screw apex and evident new bone formation at both points in time. The total area of the mineral component (TMA) in the area of interest and the bone-to-implant contact did not show any significant differences among all the groups. In the AB group, the TMA had significantly decreased from 4 to 8 weeks. Conclusions: Within the limits of this study, the rabbit sinus model showed satisfactory results in the comparison of different grafting conditions in single-stage sinus floor elevation with simultaneous implant placement. We found that the rabbit model was useful for maxillary sinus augmentation with simultaneous implant placement.