• Title/Summary/Keyword: Ill-posed reconstruction

Search Result 24, Processing Time 0.023 seconds

Intelligent Optimization Algorithm Approach to Image Reconstruction in Electrical Impedance Tomography (지능 최적 알고리즘을 이용한 전기임피던스 단층촬영법의 영상복원)

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.513-516
    • /
    • 2002
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents two intelligent optimization algorithm techniques such as genetic algorithm and simulated annealing for the solution of the static EIT inverse problem. We summarize the simulation results for the three algorithm forms: modified Newton-Raphson, genetic algorithm, and simulated annealing.

  • PDF

A NOTE ON SCATTERING OPERATOR SYMBOLS FOR ELLIPTIC WAVE PROPAGATION

  • Kim, Jeong-Hoon
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.2
    • /
    • pp.349-361
    • /
    • 2002
  • The ill-posed elliptic wave propagation problems can be transformed into well-posed initial value problems of the reflection and transmission operators characterizing the material structure of the given model by the combination of wave field splitting and invariant imbedding methods. In general, the derived scattering operator equations are of first-order in range, nonlinear, nonlocal, and stiff and oscillatory with a subtle fixed and movable singularity structure. The phase space and path integral analysis reveals that construction and reconstruction algorithms depend crucially on a detailed symbol analysis of the scattering operators. Some information about the singularity structure of the scattering operator symbols is presented and analyzed in the transversely homogeneous limit.

A New Inverse Scattering Technique Using the Moment Method in the Spectral Domain , I : Theory (파수영역에서 모멘트 방법을 이용한 새로운 역산란 방법 , I : 이론)

  • Kim, Se-Yun;Lee, Jae-Min;Ra, Jung-Woong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1141-1149
    • /
    • 1988
  • The inverse scattering scheme, which was exploited for the reconstruction of complex permittivity profiles of 2-dimensional dielectric objects by using the moment method in the spatial domain, is modified to be applicable in the spectral domain. The presented scheme is conceptually simple and provides some proper ways to regularize the ill-posed characteristics inherent to the inverse scattering problems.

  • PDF

OBSTACLE SHAPE RECONSTRUCTION BY LOCALLY SUPPORTED BASIS FUNCTIONS

  • Lee, Ju-Hyun;Kang, Sungkwon
    • Honam Mathematical Journal
    • /
    • v.36 no.4
    • /
    • pp.831-852
    • /
    • 2014
  • The obstacle shape reconstruction problem has been known to be difficult to solve since it is highly nonlinear and severely ill-posed. The use of local or locally supported basis functions for the problem has been addressed for many years. However, to the authors' knowledge, any research report on the proper usage of local or locally supported basis functions for the shape reconstruction has not been appeared in the literature due to many difficulties. The aim of this paper is to introduce the general concepts and methodologies for the proper choice and their implementation of locally supported basis functions through the two-dimensional Helmholtz equation. The implementations are based on the complex nonlinear parameter estimation (CNPE) formula and its robust algorithm developed recently by the authors. The basic concepts and ideas are simple. The derivation of the necessary properties needed for the shape reconstructions are elementary. However, the capturing abilities for the local geometry of the obstacle are superior to those by conventional methods, the trial and errors, due to the proper implementation and the CNPE algorithm. Several numerical experiments are performed to show the power of the proposed method. The fundamental ideas and methodologies described in this paper can be applied to many other shape reconstruction problems.

SPSA Approach to Image Reconstruction in Electrical Impedance Tomograhpy (전기 임피던스 단층촬영법에서 SPSA를 이용한 영상복원)

  • 김호찬;부창진;이윤준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.23-28
    • /
    • 2004
  • In EIT, various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. In this paper, a SPSA approach is proposed for the solution of the EIT image reconstruction. Results of numerical experiments of EIT solved by the SPSA approach are presented and compared to that obtained by the modified Newton-Raphson(mNR) method.

A Spline-Regularized Sinogram Smoothing Method for Filtered Backprojection Tomographic Reconstruction

  • Lee, S.J.;Kim, H.S.
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.311-319
    • /
    • 2001
  • Statistical reconstruction methods in the context of a Bayesian framework have played an important role in emission tomography since they allow to incorporate a priori information into the reconstruction algorithm. Given the ill-posed nature of tomographic inversion and the poor quality of projection data, the Bayesian approach uses regularizers to stabilize solutions by incorporating suitable prior models. In this work we show that, while the quantitative performance of the standard filtered backprojection (FBP) algorithm is not as good as that of Bayesian methods, the application of spline-regularized smoothing to the sinogram space can make the FBP algorithm improve its performance by inheriting the advantages of using the spline priors in Bayesian methods. We first show how to implement the spline-regularized smoothing filter by deriving mathematical relationship between the regularization and the lowpass filtering. We then compare quantitative performance of our new FBP algorithms using the quantitation of bias/variance and the total squared error (TSE) measured over noise trials. Our numerical results show that the second-order spline filter applied to FBP yields the best results in terms of TSE among the three different spline orders considered in our experiments.

  • PDF

Impact Force Reconstruction of Composite materials based on Improved Regularization Technology

  • Sun, Yajie;Yin, Tao;Yang, Jian;Cai, Zhiyu;Wu, Shaoen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.8
    • /
    • pp.2718-2731
    • /
    • 2021
  • In the structural health monitoring of composite materials, in order to solve the ill-posed problem of impact force reconstruction, regularization techniques are often used to deal with it. Due to the poor convergence of the traditional Tikhonov regularization method, in order to accurately reconstruct the time history of the impact force, this paper improves Tikhonov regularization method and constructs homotopy function with strong convergence. Since the optimal regularization parameters need to be found in the homotopy function, the Newton downhill method is used to find the optimal parameters and the homotopy function can be calculated, which can accurately reconstruct the time history of the impact force. In order to verify the universality of the method in this paper, impact hammers of different materials were used in the experiment in this paper to study and compare the reconstruction effect of impact time history of different impact hammers.

Application of Matrix Adaptive Regularization Method for Human Thorax Image Reconstruction (인체 흉부 영상 복원을 위한 행렬 적응 조정 방법의 적용)

  • Jeon, Min-Ho;Kim, Kyung-Youn
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Inverse problem in electrical impedance tomography (EIT) is highly ill-posed therefore prior information is used to mitigate the ill-posedness. Regularization methods are often adopted in solving EIT inverse problem to have satisfactory reconstruction performance. In solving the EIT inverse problem, iterative Gauss-Newton method is generally used due to its accuracy and fast convergence. However, its performance is still suboptimal and mainly depends on the selection of regularization parameter. Although, there are few methods available to determine the regularization parameter such as L-curve method they are sometimes not applicable for all cases. Moreover, regularization parameter is a scalar and it is fixed during iteration process. Therefore, in this paper, a novel method is used to determine the regularization parameter to improve reconstruction performance. Conductivity norm is calculated at each iteration step and it used to obtain the regularization parameter which is a diagonal matrix in this case. The proposed method is applied to human thorax imaging and the reconstruction performance is compared with traditional methods. From numerical results, improved performance of proposed method is seen as compared to conventional methods.

Image Reconstruction Using Genetic Algorithm in Electrical Impedance Tomograghy (유전 알고리즘을 이용한 전기 임피던스 단층촬영법의 영상복원)

  • Kim, Ho-Chan;Moon, Dong-Chun;Kim, Min-Chan;Kim, Sin;Lee, Yoon-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.50-56
    • /
    • 2003
  • In electrical impedance tomography(EIT), various image reconstruction algorithms have been used in order to compute the internal resistivity distribution of the unknown object with its electric potential data at the boundary. Mathematically the EIT image reconstruction algorithm is a nonlinear ill-posed inverse problem. This paper presents a new combined method based on genetic algorithm(GA) and modified Newton-Raphson(mNR) algorithm via two-step approach for the solution of the static EIT inverse problem. In the first step, each mesh is classified into three mesh groups: target, background, and temporary groups. The mNR algorithm can be used to determine the region of group. In the second step, the values of these resistivities are determined using genetic algorithm. Computer simulations with the 32 channels synthetic data show that the spatial resolution of reconstructed images by the proposed scheme is improved compared to that of the mNR algorithm at the expense of increased computational burden.

Terrain Geometry from Monocular Image Sequences

  • McKenzie, Alexander;Vendrovsky, Eugene;Noh, Jun-Yong
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.98-108
    • /
    • 2008
  • Terrain reconstruction from images is an ill-posed, yet commonly desired Structure from Motion task when compositing visual effects into live-action photography. These surfaces are required for choreography of a scene, casting physically accurate shadows of CG elements, and occlusions. We present a novel framework for generating the geometry of landscapes from extremely noisy point cloud datasets obtained via limited resolution techniques, particularly optical flow based vision algorithms applied to live-action video plates. Our contribution is a new statistical approach to remove erroneous tracks ('outliers') by employing a unique combination of well established techniques-including Gaussian Mixture Models (GMMs) for robust parameter estimation and Radial Basis Functions (REFs) for scattered data interpolation-to exploit the natural constraints of this problem. Our algorithm offsets the tremendously laborious task of modeling these landscapes by hand, automatically generating a visually consistent, camera position dependent, thin-shell surface mesh within seconds for a typical tracking shot.