• Title/Summary/Keyword: Ignition Possibility

Search Result 95, Processing Time 0.023 seconds

Eutrophication in the Namhae Coastal Sea 2. The Aspects of Eutrophication of Bottom Mud and Surface Seawater in the Namhae Coastal Seas (남해 연안해역의 부영양화 2. 남해 연안해역의 저질 및 수질의 부영양화 실태)

  • Kim, Sung-Jae
    • Journal of Wetlands Research
    • /
    • v.3 no.2
    • /
    • pp.107-118
    • /
    • 2001
  • The aim of this paper is to grasp eutrophication aspects in Namhae coastal seas, statistically analyzing existing data for their surface seawater and bottom mud. A pollution level(ignition loess) of bottom mud, on the whole, trended to increase as moving the coastal sea around Mokpo-Wando toward the east(Gyeongnam Namhae coastal seas). Especially, the pollution level(ignition loss=10.5%) of bottom mud for the coastal sea around Tongyeong-Keoje-Gosung was similar to that(10.3%) for the coastal sea around Masan-Jinhae, whose coastal marine pollution was the severest in Namhae coastal seas. It indicates that large amounts of pollutant from aqualculture facilities have been, thus far, accumulated on the coastal sea around Tongyeong-Keoje-Gosung, considering there was no significant inflow of sewage and industrial wastewater into this coastal sea. A COD, T-N, and T-P level of surface seawater, on the whole trended to increase as moving the coastal sea around Mokpo-Wando toward the east(Gyeongnam Namhae coastal seas). A COD level appeared to be the second grade of coastal water quality over the entire year throughout all Namhae coastal seas A T-N level exceeded the third grade of coastal water quality throughout all Namhae coastal seas except the coastal sea around Mokpo-Wando. Especially, a T-N level exceeded as many as three and six times over the third grade of coastal water quality in the coastal sea around Tongyeong-Keoje-Gosung and Masan-Jinhae, respectively. A T-P level appeared to be the second grade of coastal water quality in the coastal sea around Mokpo-Wando and the third grade of coastal water quality in the coastal sea around Yosu-Narnhae and Tongyeong-Keoje-Gosung, while it exceeded as many as two times over the third grade of coastal water quality. A degree of eutrophication of the surface seawater was 1.5 in the coastal sea around Mokpo-Wando and 11.9 In the coastal sea around Tongyeong-Keoje-Gosung, gradually increasing as moving toward the east(Gyeongnam Narnhae coastal seas). It sharply increased to 146.1 in the coastal sea around Masan-Jinhae. Because the degree of eutrophication throughout all Namhae coastal seas exceeded 1, a red tide organism could pose a possibility of proliferation at any place of Namhae coastal seas if other requirements were satisfied. It indicates that a red tide may move to another place once a red tide breaks out at a place of Namhae coastal seas.

  • PDF

An Experimental Study on the Influence of the Spread of Firebrand on Building Exterior Materials and Roofing Materials in Urban Areas (도심지 인접 산불의 불티 확산이 건축물 외장재와 지붕재에 미치는 영향에 관한 실험적 연구)

  • Min, Jeong-Ki
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.617-626
    • /
    • 2021
  • Purpose: The purpose of this study is to evaluate the fire srpead risk of building exterior and roofing materials due to the firebrand of forest fire occurring in the urban areas. Method: In order to achieve this research purpose, by selecting building materials used for exterior and roofing materials of buildings, the time to ignition, total heat release, and heat release rate were investigated, and a forest fire firebrand system was established to the possibility of fire spread was confirmed. Result: As a result of the cone calorimeter test, the roofing material had a similar or faster ignition time due to radiant heat compared to the exterior material with the steel plate exposed to the outside, and showed a higher heat release rate and total heat release than the exterior material. Although it was affected by the flammable material, it was confirmed that it did not spread easily due to the limited amount of combustible material, and carbonization marks appeared inside. Conclusion: The cone calorimeter test method has been shown to be useful in understanding the combustion characteristics of building materials by radiant heat, but the fire spread due to a firebrand in a forest fire is directly affected by the flame due to the ignition of surrounding combustibles, so finding a direct correlation with the cone calorimeter method is difficult. It is judged that the roof material may be more vulnerable to the spread of fire due to the fire than the exterior material.

Study on Fire Hazard Analysis along with Heater Use in the Public Use Facility Traditional Market in Winter (겨울철 다중이용시설인 전통재래시장 난방기구 사용에 따른 화재 위험성 분석에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.583-597
    • /
    • 2014
  • Fire caused by heater has various causes as many as the types of heater. also, lots of damage of human life and property loss are caused, since annually continuous fire accident by heater in traditional market is frequently occurring. There are not many cases of fire due to heater in most of residential facilities such as general house, apartments, etc., because they are supplied with heating boiler, however the restaurant, store and office of the market, sports center, factory, workplace, etc. still use heater, e.g. oilstove, electric heater, etc., so that they are exposed to fire hazard. Also, when investigating the number of fire due to heater, it was analyzed to occur in order of home boiler, charcoal stove, oilstove, gas heater/stove, electric stove/heater, the number of fire per human life damage was analyzed in order of gas heater/stove, oil heater/stove, electric heater/stove, briquette/coal heater. Also, gas and oil related heater were analyzed to have low frequency, however, with high fire intensity. Therefore, this research aimed at considering more scientific fire inspection and identification approach by reenacting and reviewing fire outbreak possibility caused by combustibles' contact and conductivity under the normal condition and abnormal condition in respect of ignition hazard, i.e. minimum ignition temperature, carbonization degree and heat flux along with it, due to oilstove and electric stove, which are still frequently used in public use facility, traditional market, and, of which actual fire occurrence is the most frequent. As the result of reenact test, ignition hazard appeared very small, as long as enough heat storage condition is not made in both test objects(oilstove/electric stove), however carbonization condition was analyzed to be proceeded per each part respectively. Eventually, transition to fire is the ignition due to heat storage, so that it was analyzed to ignite when minimum heat storage temperature condition of fire place is over $500^{\circ}C$. Particularly, in case of quartz pipe, the heating element of electric stove, it is rapidly heated over the temperature of $600^{\circ}C$ within the shortest time(10sec), so that the heat flux of this appears 6.26kW/m2, which was analyzed to result in damage of thermal PVC cable and second-degree burn in human body. Also, the researcher recognized that the temperature change along with Geometric View Factor and Fire Load, which display decrease of heat, are also important variables to be considered, along with distance change besides temperature condition. Therefore, the researcher considers that a manual of careful fire inspection and identification on this is necessary, also, expects that scientific and rational efforts of this research can contribute to establish manual composition and theoretical basis on henceforth fire inspection and identification.

The Explosion Prevention Method for Electrolytic Motor Start Capacitors using Current Characteristic (통전전류 특성을 이용한 모터 기동용 전해 커패시터 폭발 방지 방법)

  • Kim, Jae-Hyun;Park, Jin-Young;Park, Kwang-Muk;Bang, Sun-Bae;Kim, Yong-Un
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1836-1843
    • /
    • 2017
  • In this paper, we investigated fire cases those are believed to be caused by explosion of a electrolytic motor start capacitor. Using two types of commercially available electrolytic motor start capacitors, capacitor current and the possibility of capacitor explosion were tested. And the ignition possibility of the internal material leaked from a capacitor was also tested. In addition, experiments were conducted to see if the fire could spread when a capacitor was exposed to an external flame. From our test we observed that the current of the electrolytic motor start capacitor rose continuously to a certain level by product, if the capacitor was continuously energized with working voltage, and then the capacitor was exploded. The gas and liquid leaked from the capacitor by the explosion could ignite by an electric arc and an external flame. The capacitor current at explosion was different product by product, but each product had a certain current level at explosion. And the increase rate of the capacitor current until explosion was 24% and 31% for the products used in the experiment. We proposed the capacitor explosion prevention method that cuts off power when the capacitor current rises to a certain threshold level. The proposed method can be used if the current of the applied electrolytic motor start capacitor rises continuously and then the capacitor is exploded at a certain current level when the capacitor is energized continuously.

HUGE DIRECT NUMERICAL SIMULATION OF TURBULENT COMBUSTION - TOWARD PERFECT SIMULATION OF IC ENGINE -

  • Tanahashi, Mamoru;Seo, Takehiko;Sato, Makoto;Tsunemi, Akihiko;Miyauchi, Toshio
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.114-125
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

A Study on Flame Monitoring System Development for Combustion Management of Boilers (보일러 연소관리를 위한 화염감시 시스템 개발에 관한 연구)

  • Baek, Woon-Bo;Shin, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1587-1594
    • /
    • 2003
  • Increased energy costs have placed demands for improved combustion efficiency, high equipment availability, low maintenance and safe operation. Furthermore low NO$_x\$ modification, installed due to strict environmental legislation, requires very careful combustion management. The flame monitoring system has been developed specially to satisfy these requirements. We aimed at gaining the relationship between the burner flame image and emissions such as NO$_x$ and unburned carbon in furnace by utilizing the image processing method. For the first step of development, its possibility test was undertaken with bench furnace. The test proceeded to the second step with pilot furnace and the system was observed to be effective for evaluating the combustion conditions. By using this technology, it is possible to perform continuous monitoring of the combustion conditions and instant detection of individual changes for each burner to prevent future loss of ignition. This may contribute to the saving of burner adjusting times for the changes of loads and fuels and to the reduction of the slagging as well.

Development of Propellant for Turbopump Pyro Starter (터보펌프 시동기용 추진제 개발)

  • Song, Jong-Kwon;Choi, Sung-Han;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.7-10
    • /
    • 2009
  • The development and evaluation of solid propellant were performed for the turbopump pyro starter, which start up the liquid propellant rocket engine for the Space Launch Vehicle (SLV). Requirements for the turbopump pyro starter propellant include the production of low flame temperature, low burning rate and nontoxic gas to protect the mechanical corrosion or air pollution. This study describes the development of the solid propellant composition which is based on PCP binder. DHG (Dihydroxy glyoxime), which has advantages of oxygen balance and ignition, was used as coolant. The mechanical properties and burning rate of the propellants were measured. Finally, static fired test was performed to prove the possibility of development.

  • PDF

Huge Direct Numerical Simulation of Turbulent Combustion-Toward Perfect Simulation of IC Engine-

  • Tanahashi, Mamoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.359-366
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

  • PDF

Huge Direct Numerical Simulation of Turbulent Combustion - Toward Perfect Simulation of IC Engine -

  • Tanahashi, Mamoru
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.359-366
    • /
    • 2008
  • Current state and perspective of DNS of turbulence and turbulent combustion are discussed with feature trend of the fastest supercomputer in the world. Based on the perspective of DNS of turbulent combustion, possibility of perfect simulations of IC engine is shown. In 2020, the perfect simulation will be realized with 30 billion grid points by 1EXAFlops supercomputer, which requires 4 months CPU time. The CPU time will be reduced to about 4 days if several developments were achieved in the current fundamental researches. To shorten CPU time required for DNS of turbulent combustion, two numerical methods are introduced to full-explicit full-compressible DNS code. One is compact finite difference filter to reduce spatial resolution requirements and numerical oscillations in small scales, and another is well-known point-implicit scheme to avoid quite small time integration of the order of nanosecond for fully explicit DNS. Availability and accuracy of these numerical methods have been confirmed carefully for auto-ignition, planar laminar flame and turbulent premixed flames. To realize DNS of IC engine with realistic kinetic mechanism, several DNS of elemental combustion process in IC engines has been conducted.

  • PDF

A Study on the Possibility of Ignition by Disposable Lighter (일회용 라이터 이용, 차량화재 착화.발화 가능여부에 대한 행태 연구 분석)

  • Kim, Seong-Hoan;Oh, Jae-Keun;Jo, Young-Jin
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.9 no.1
    • /
    • pp.27-34
    • /
    • 2006
  • 2004년 2월~5월까지 대구시 달서구 00동 소재에서 연쇄방화가 발생 되어 수사를 하여 오던 중 우리경찰서에서 다방면으로 수사하여 차량화재 방화범 000를 검거 후 기소한 상태에서 공판이 진행되던 과정에서 변호인 측에서 일회용 라이터로는 차량을 착화 또는 발화의 가능성이 현저히 어렵다는 이유로 피고인의 무혐의를 주장하는 변론이 제기되어 00지방검찰청 000 담당검사의 요청에 의하여 혐의를 입증하고 검증할 수 있는 자료를 제출하고 검증자료가 없으면 본 건의 조건에 따르는 실험을 실시하고 감정결과를 제출하라는 지휘에 의거 우리경찰서 과학수사팀에서는 차량(프라이드)을 1대 구입하여 지방경찰청 과학수사팀, 국립과학수사구소 남부분소 이공학실 화재 연구실과 연계하여 차량화재 실험을 실시하고 실험과정 및 발화 행태와 양상을 구체적으로 증명할 수 있는 자료를 조사연구 분석하고 국립과학수사 연구소에서는 00지방검찰청에 촬영 데이터 원본영상과 촬영물, 그리고 감정서를 작성, 실험 결과를 문서화하여 제출하여 혐의를 입증한 사례 연구로 피의자에 대한 혐의 입증시 상황이나 정황 증거보다 실체적 진실증거의 중요성을 재인식 하고자 한다.

  • PDF