• Title/Summary/Keyword: Ignition Delay

Search Result 371, Processing Time 0.023 seconds

Combustion Analysis in a Pro-Combustion Chamber Diesel Engine by Approximate Heat Release Rate (근사적 열발생율에 의한 예연소실식 디젤기관의 연소해석)

  • 왕우경
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.30-38
    • /
    • 1993
  • In this study, the combustion characteristics in a pre-combustion chamber diesel engine was investigated with experimental conditions of marine engine load. The heat release analysis used was a single-zone single-chamber thermodynamic analysis based on pre-combustion chamber pressure-time data. Based on the results of this investigation, the following conclusions were reached: 1) Increasing the load, peak pressure was increased and position of P sub(max) was retarded in crank angle degrees. 2) Ignition delay time was almost constant without relating to the load and the heat values to form a combusitible mixture were decreased apparently with increasing the load. 3) In premixed-combustion mode, the pattern of heat release rate was resembled without relating to the load and premixed-combustion time was shortened with increasing the load. 4) Increasing the load, mass of premixed-burned fuel was increased slightly, but was invariable beyond a certain fuel-air ratio. 5) Increasing the load, premixed-burned fraction was decreased.

  • PDF

Combustion and Emission Characteristics of Biodiesel Blended Fuel by EGR Rate in a 4-cylinder CRDI Diesel Engine (4실린더 커먼레일 디젤엔진에서 바이오디젤 혼합연료와 EGR율에 따른 연소 및 배기특성)

  • Jeong, Kyu-Soo;Lee, Dong-Gon;Youn, In-Mo;Roh, Hyun-Gu;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.4
    • /
    • pp.130-136
    • /
    • 2011
  • This study describes the effect of EGR rate on the combustion and emissions characteristics of a four cylinder CRDI diesel engine using biodiesel (soybean oil) blended diesel fuel. The test fuel is composed of 30% biodiesel and 70% ULSD (ultra low sulfur diesel) by volumetric ratio. The experiment of engine emissions and performance characteristics were performed under the various EGR rates. The experimental results showed that ignition delay was extended, the maximum combustion pressure and heat release gradually were decreased with increasing EGR rate. Comparing biodiesel blended fuel to ULSD, the injection quantity of biodiesel blended fuel was further increased than ULSD. The emission results showed that $NO_x$ emission of biodiesel blended fuel becomes higher according to the increase of EGR rate. However, in the case of biodiesel blended fuel, HC, CO and soot emissions were decreased compared to ULSD.

A study on the use of pure palm oil (biodiesel-DO) as an alternative fuel on the fuel supply system of marine diesel engines

  • Uy, Dang Van
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.7
    • /
    • pp.685-693
    • /
    • 2013
  • The biodiesel used as an alternative fuel for diesel engines is well- known, however the price of the bio-diesel is still higher than conventional diesel oil (DO) by 10% to 15% depending on a kind of bio-oil and a country producing the bio-diesel. One of idea to reduce the price of bio-diesel is to use the pure bio-oil as fuel for marine diesel engines, because to use the pure bio-oil as fuel without the esteritification process can reduce the price of bio-fuel. At present time, some experts in some countries who have been carrying out experiments on the use of pure bio-oil produced from rape seeds, sunflower seeds... as fuel for marine diesel engines have achieved important results. In recent years, at Vietnam Maritime University we also have been using the pure palm oil and its blended fuel (Palm oil and DO) as fuel for marine diesel engines in laboratory and on board of ships. The blended fuel is a mixing fuel of the pure palm oil and diesel oil with content of pure palm oil by 5%, 10%, 15%, 20% and 35%. In this paper, we would like to present some results from our experiments to investigate the impacts of using the palm oil and its blended fuel on the important technical features of the fuel supply system of marine diesel engines such as the fuel supply amount for one cycle, fuel supplying pressure, ignition delay time and so on. The results from the research will be good fundamental parameters to support proper operation of marine diesel engines using bio-oil and blended fuels as alternative fuel in near future.

A Study on Diesel Engine Performance with Ar and $CO_2$ Addition (Ar과 $CO_2$ 첨가에 따른 디젤기관의 성능에 관한 연구)

  • 정영식;이상만;채재우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.93-99
    • /
    • 1997
  • The re quest to develop the engines that are able to run without air or with very little oxygen condition is raised with the interest of ocean science or the mines. This research had already be gun before the world war II, but had been stagnant owing to the appearance of nuclear power. Recycle diesel engines have ability to run under the above mentioned condition the recycle diesel engine recirculates exhaust gases into intake port and consumes additional oxygen supplied by oxygen tank. Carbon dioxide is controlled by the absorber. The combustion and emission characteristics of recycle diesel engines are quite different with conventional one because the working fluids of recycle diesel engines consist of Ar, $CO_2$ and $O_2$ as well as $N_2$. Recycle diesel engine is therefore different with general diesel engine from the viewpoint of intake air composition. It is required to investigate the effect of intake composition in the combustion and emission to know recycle diesel engine. In this study, NOx concentration, smoke and cylinder pressure are measured with the variation of Ar and $CO_2$ Reduces show that the addition of Ar reduces NOx but increases smoke. Otherwise $CO_2$ reduces smoke and NOX simultaneously. Only $CO_2$ increases the ignition delay and both gases increase fuel consumption Ar addition is superior to $CO_2$ addition for the performance of recycle diesel engine system but $CO_2$ has the avantage with respect to emission.

  • PDF

Comparative Study of Flame Spread Behaviors in One Dimensional Droplet Array Under Supercritical Pressures of Normal Gravity and Microgravity (통상 및 미소 중력의 초임계 압력하에서 일차원 액적 배열의 화염 퍼짐 거동의 비교 연구)

  • Park, Jeong;Shin, Hyun Dong;Kobayashi, Hideaki;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.1
    • /
    • pp.140-148
    • /
    • 1999
  • Experiments on flame spread in an one-dimensional droplet array up to supercritical pressures of fuel droplet have been conducted In normal gravity and microgravity. Evaporating process around unburnt droplet is observed through high-speed Schlieren and direct visualizations in detail, and flame spread rate is measured using high speed chemiluminescence images of OH radical. Flame spread behaviors are categorized into three: flame spread is continuous at low pressures and is regularly intermittent up to the critical pressure of fuel. flame spread is irregularly intermittent and zig-zag at supercritical pressures of fuel. At atmospheric pressure, the limit droplet spacing and the droplet spacing of maximum flame spread rate in microgravity are larger than those in normal gravity. In microgravity, the flame spread rate with the increase of ambient pressure decreases initially, takes a minimum, and then decreases after taking maximum. This is so because the flame spread time is determined by competing effects between the increased transfer time of thermal boundary layer due to reduced flame diameter and the reduced ignition delay time in terms of the increase of ambient pressure. Consequently, it is found that flame spread behaviors in microgravity are considerably different from those in normal gravity due to the absence of natural convection.

A Prediction on the Flammability Limits of Biodiesel Fuel in the High Temperature and Pressure Conditions (고온·고압 조건에서 바이오디젤의 가연한계 예측)

  • Lim, Young Chan;Jung, Jun Woo;Suh, Hyun Kyu
    • Journal of ILASS-Korea
    • /
    • v.24 no.4
    • /
    • pp.157-162
    • /
    • 2019
  • This numerical study was analyzed to predict the flammability limits of biodiesel and diesel fuels in the high temperature and pressure conditions. To achieve this, the biodiesel fuel was simulated with the chemical species of n-heptane (n-C7H16), methyl decanoate (C11H22O2), and methyl-9-decenoate (C11H20O2), and the diesel fuel was substituted the chemical species of n-heptane. The closed 0-D homogeneous reactor model which was employed the 1100 K of ambient temperature and 35 atm of ambient pressure was used for the simulation of constant volume combustion, and the equivalence ratio was changed from 0.3 to 2.5 conditions. In addition, a comparative analysis study was conducted with the results of HCCI engine simulation and flammability limits according to the changes of equivalence ratio. The results of combustion temperature, pressure, and ignition delay were increased when the equivalence ratio elevated from 0.3 to 1.3 conditions because the increase in fuel oxidation rate affects the chemical reaction of the overall combustion process. Furthermore, the CO and NOX production under the rich combustion conditions are considered to have a trade off relationship since the OH radicals and O2 chemical species are greatly affected the CO and NOX production and oxidation processes.

Performance and Emission Characteristics of a Diesel Engine Operated with Wood Pyrolysis Oil (목질 열분해유를 사용하는 디젤엔진의 성능 및 배기특성에 관한 연구)

  • Lee, Seok-Hwan;Park, Jun-Hyuk;Choi, Young;Woo, Se-Jong;Kang, Kern-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.102-112
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), have been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of BCO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the BCO. One of the easiest way to adopt BCO to diesel engine without modifications is emulsification of BCO with diesel and bio diesel. In this study, a diesel engine operated with diesel, bio diesel (BD), BCO/diesel, BCO/bio diesel emulsions was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by BCO emulsions were examined. Results showed that stable engine operation was possible with emulsions and engine output power was comparable to diesel and bio diesel operation. However, in case of BCO/diesel emulsion operation, THC & CO emissions were increased due to the increased ignition delay and poor spray atomization and NOx & Soot were decreased due to the water and oxygen in the fuel. Long term validation of adopting BCO in diesel engine is still needed because the oil is acid, with consequent problems of corrosion and clogging especially in the injection system.

A Modeling about Penetration Behavior of Diesel Engine Liquid Fuel Spray (디젤기관의 분무선단 도달거리에 관한 모델링)

  • 안수길;배종욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-152
    • /
    • 1989
  • The study on the penetration of sprays during the initial phase of injection period, i.e. ignition delay period, in high speed small D.I. diesel engines are strongly affected by such behavior. To investigate the penetration of the sprays injected through single cylinderical orifice, a mathematical model was developed and compared with experimental results. In this model, radial heterogeneity of fuel density in the spray, transiency of injection pressure difference, and spray outrunning phenomenon were considered simultaneously. Experiments on the behaviors of sprays in the high pressure air chamber were conducted at various injection pressure differences and different levels of back air pressure. The behaviors of sprays injected into the chamber through the conventional Bosch injection pump were visualized with side stroboscopic illumination. Comparison of the experimental results with predictions from the mathematical model confirmed the validity of the model. It was also found that during the initial phase of the injection period the penetration of sprays vs. time appeared to have two transition points; one corresponded to disintegration point of liquid fuel jet, the other to the beginning of steady state injection.

A Study on the Ignition Delay Effect in the Reduced-Scale Fire by Flame-Resistant Treated Plywood (유사 화재에 대한 방염처리 합판의 착화 지연효과 연구)

  • Lee, Seung-Hyun;Kim, Hwang-Jin;Lee, Sung-Eun;Oh, Kyu-Hyung
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.180-187
    • /
    • 2011
  • 본 논문은 다중이용업소와 목조건축물에 자주 사용되는 미송합판에 방염처리를 하여 유사 화재를 구현하고, 그 화염 세기에 따른 방염의 실효성을 실험한 것이다. 방염처리를 하면 화재 시 가연물의 초기착화시간을 지연시켜 화재성장속도를 늦출 수 있고, 원활한 소화활동을 가능하게 해준다. 하지만 어느 정도 화재가 진행되어 화염이 거세지면, 45도 연소시험을 통한 방염기준을 충족하여도 그 성능을 기대하기 어렵다고 한다. 따라서 45도 연소시험 시 사용되는 65mm의 불꽃보다 큰 화염상태(초기착화 이후의 상태)에서 방염처리한 내장재(미송합판)의 방염성능이 유지되는지의 여부를 실제로 입증하고 그 근거를 뒷받침하기 위하여 본 연구를 시작하게 되었다. 실험에서는 화재의 규모(화염의 세기)를 달리하여 각기 다른 종류의 방염제로 방염 처리한 미송합판의 착화 시 화염온도, 복사열 유속 그리고 착화지연시간을 파악하였으며, 45도 연소시험과 관련하여 방염성능을 분석하였다. 45도 연소시험의 경우 실험에 사용한 방염 처리 합판은 방염성능 기준을 만족하는 것으로 나타났으며, 소규모 유사 화재로 직경 10cm 연소용기를 사용한 연소실험에서는 방염 처리한 합판의 착화지연시간이 평균적으로 대규모 유사 화재실험보다 길어 어느 정도는 방염효과를 갖는 것으로 나타났다. 하지만 대규모 유사 화재로 1단위 유류화재 연소용기를 사용한 연소실험의 경우 열방출율이 커 형성된 탄화막이 무분별하게 박리되고 발화가 일어나 착화지연시간의 차이를 구별하기 어려웠기 때문에 방염효과를 기대할 수 없었다.

  • PDF

Measurement and Investigation of Combustible Characteristics for Risk Assessment of Toluene (톨루엔의 위험성 평가를 위한 연소특성치 측정 및 고찰)

  • Ha, Dong-Myeong;Jeong, Kee-Sin
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.76-81
    • /
    • 2010
  • For the safe handling of toluene, explosion limit at $25^{\circ}C$ and the temperature dependence of the explosion limits were investigated. And flash point and AIT (Autoignition Temperature) for toluene were experimented. By using the literature data, the lower and upper explosion limits of toluene recommended 1.13 vol% and 7.9 vol%, respectively. In this study, measured the lower and upper flash points of toluene by air-blowing tester were $5^{\circ}C$ and $40^{\circ}C$, respectively. And measured the upper flash points of toluene by Setaflash tester was $41.5^{\circ}C$. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for toluene, and the experimental AIT of toluene was $547^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of toluene is proposed. The values calculated by the proposed equations were a good agreement with the literature data.