• 제목/요약/키워드: Idle speed control

검색결과 67건 처리시간 0.028초

고속 롤투롤 시스템의 펜듈럼 덴서를 사용한 장력계어기 매칭 설계 (Matching Design of a Tension Controller with Pendulum Dancer in Roll-to-Roll Systems)

  • 강현규;신기현
    • 한국정밀공학회지
    • /
    • 제26권6호
    • /
    • pp.81-89
    • /
    • 2009
  • Dancer systems are typical equipment for attenuation of tension disturbances. Lately, demands for high speed roll-to-roll machines are rising but it is prior to attenuate the tension variation on the web entering into the printing zone to achieve the speed increment. Maintaining a constant tension before the first printing cylinder is the key of high speed, high quality printing. Dancer has been researched in two ways, whether it is controlled or not. The first one is active dancer and the other one is passive dancer. In the active dancer, a position of idle roll of dancer is measured and the roll is moved by external hydraulic cylinder to control tension disturbances. While the passive one composed with spring, damper and idle roll has no external actuator to position the idle roll. The tension disturbance causes movement of dancer roll and the displacement of the roll regulates the tension variation. On the other hand a composite type of dancer is applied for roll-to-roll printing machines. It has same apparatus as passive dancer. The displacement of roll is measured and front(or rear) driven roller is controlled to position the roll. In this paper, it is presented an analysis of pendulum dancer including position feedback PI control and logic for PI gain tuning in roll-to-roll machines. Pole-zero map and root locus with varying system parameters gives a design method for control of the dancer.

LPG 자동차 엔진의 솔레노이드밸브, 릴레이, 공회전조절장치의 고장사례 연구 (Study for Failure Examples of Solenoid Valve, Relay and Idle Speed Control Actuator in Liquid Petroleum Gas vehicle Engines)

  • 김청균;이일권;조승현
    • 한국가스학회지
    • /
    • 제15권3호
    • /
    • pp.47-52
    • /
    • 2011
  • 이 논문의 목적은 LPG 자동차의 전자제어에 대한 요소의 하나인 액추에이터에 대한 고장사례를 찾아 분석하고 연구하는 것이다. 차량의 연료를 저장하는 봄 내부의 LPG 긴급 차단 솔레노이드 밸브의 필터가 막혀 연료의 공급이 간헐적으로 차단되는 현상이 발생되어 엔진이 작동하는 동안 엔진의 초기시동불량이나 가속이 되지 않는 것을 확인하였다. 엔진 컨트럴 릴레이 부위의 접점부가 가공불량이나 조립불량에 의해 완전한 면접촉이 되지않아 접촉저항이 발생되어 초기 시동을 걸었을 때 시동이 걸렸으나 재시동을 걸 때 시동이 걸리지 않는 현상을 확인하였다. 공회전 조절장치의 내부에 카본이 퇴적되어 액추에이터가 고착되어 흡입공기의 공급이 감소되어 자동차의 시동이 걸려 공회전 상태일 때 엔진의 회전수가 규정 범위를 벗어나 상승과 하락을 반복하는 불안정 상태를 확인하였다.

마이크로컴퓨터를 이용한 가솔린 기관용 전자제어장치의 개발에 관한 연구 (A Study on the Development of an Electronic Control Unit for a Gasoline Engine using Microcomputer)

  • 김태훈;조진호
    • 한국자동차공학회논문집
    • /
    • 제3권6호
    • /
    • pp.224-237
    • /
    • 1995
  • An ECU(Electronic Control Unit) with 16 bit microcomputer has been developed. This system includes hardware and software for more precise control on fuel injection, ignition timing, and idle speed. This control system employs an air flow sensor of the hot wire type, a direct ignition system, an idle speed control system using a solenoid valve, and a crank angle sensor. Especially, the crank angle sensor provides two separate signals: One is the position signal(POS) which indicates 180 degree pulses per revolution, and the other is the reference signla(REF) that represents each cylinder individually. The conventional engine control system requires at least two engine revolutions in order to identify the cylinder number. However, the developed engine control system can recognize the cylinder number within a quarter of an engine revolution. Therfore, the developed engine control system has been able to control fuel injection and ignition timing more quickly and accurately, Furthermore, the number of misfire reduces during the cold start.

  • PDF

기어 래틀 저감을 위한 시스템 파라미터 연구 (A Study on the System Parameters to Reduce the Idle Gear Rattle)

  • 안병민;장일도;최은오;홍동표;정태진
    • 한국자동차공학회논문집
    • /
    • 제6권3호
    • /
    • pp.88-96
    • /
    • 1998
  • The rattle noise is the most significant in many kinds of manual gearbox nioses, which is generated at the idle stage of the engine operation. The main torsional vibrat- ion source of the driveline is the fluctuation of the engine torque. The gear rattle is impacts generating in the backlash of the free gear due to this torsional vibration. Many researchers reported the clutch torsional characteristic optimization method to reduce the idle gear rattle but only few of them give sufficient consideration to the system parameters like gear backlash, drag torque, system inertia, inertia distribution, engine torque fluctuation, idle engine rotation speed, and accessory load. In this paper, influence rate of system parameters on the gear rattle is presented and counterplans like backlash reduction, drag torque increase, inertia addition, inertia distribution modification and engine torque characteristic control are suggested.

  • PDF

소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 디자인 (Low-Noise Design of Passage of Idle Speed Control Actuator in Automotive Engines Using Scaling Laws for Noise Prediction)

  • 정철웅;김재헌;박용환;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.283-290
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an Idle Speed control Actuator (ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying Computational Fluid Dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

  • PDF

소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계 (Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction)

  • 정철웅;김재현;김성태;박용환;이수갑
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

ENGINE CONTROL USING SPEED FEEDBACK

  • Stotsky, A.;Solyom, S.;Kolmanovsky, I.V.
    • International Journal of Automotive Technology
    • /
    • 제8권4호
    • /
    • pp.477-481
    • /
    • 2007
  • In this article we present a new, reference model based, unified strategy for engine control. Three main modes are considered: first is the driver control mode where the driver controls the engine via the pedal position; second is the dashpot mode, that is, when the driver takes his foot off the pedal; and, lastly is the idle speed control mode. These modes are unified so that seamless transitions between modes now becomes possible. The unification is achieved due to the introduction of a reference model for the engine speed whereby only the desired engine speed is different for different modes while the structure of the control system remains the same for all the modes. The scheme includes an observer that estimates unknown engine load torque. A proof of robustness with respect to unknown load disturbances both within the operating modes and during intermode transitions is given.

A Study on Variable Speed Generation System with Energy Saving Function

  • Dugarjav, Bayasgalan;Lee, Sang-Ho;Han, Dong-Hwa;Lee, Young-Jin;Choe, Gyu-Ha
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.137-143
    • /
    • 2013
  • This paper presents development of variable speed generation (VSG) system with energy saving function. The rubber tyred gantry crane (RTGC) requires the power from diesel-engine. Significant fuel savings by reducing the engine speed can be achieved, because all of operation modes except hoisting are required lower power than rated value of engine. When low speed operation output voltage of generator is decrease until acceptable range of motor driver inverters and auxiliary load supplier. According to power demand engine speed is varying from 20 to 60Hz, and voltage is varying between 210Vac and 480Vac. When idle mode or low power operation dc/dc converter operates by constant output voltage control and inverters dc site voltage is compensated by it. This paper proposed 3-phase interleaved boost converter which has the same structure as the commercially available 3-phase inverter and current sharing capability. 400kW interleaved converter is designed and a performance of converter is evaluated through several experiments with a RTGC system. Energy saving VSG system can cut down fuel consumption by 36% and 21.3% at idle and unidirectional load operations.

Intelligent Idle Stop & Go 제어 기법에 따른 연비 효과 연구 (A Reaserch on Fuel Economy Improvement by Intelligent Idle Stop & Go)

  • 황규만;권용태;고성석;최재권
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.71-76
    • /
    • 2014
  • This Research focuses on how to maximize fuel economy improvement of I.S.G. while keeping 12V system. With 12V system the maximum gain of fuel economy with I.S.G. is known to be about 3~5% in FTP-75 mode because engine stop is only conducted in standstill idle. But in this study deceleration engine stop (engine speed is zero) has been tried additionally and the optimum condition for deceleration engine stop was found to maximize fuel economy improvement in practical point of view, the result of which is about 8.8% in FTP-75.

스로틀 바디가 가솔린 엔진의 출력 및 배기배출물 특성에 미치는 영향에 관한 실험적 연구 (An Experimental Study on the Performance and Emission Characteristics of SI Engine Using New Type of Throttle Body)

  • 조승완;이상석;진동규;심재준;김규보;전충환;장영준
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.884-890
    • /
    • 2008
  • Many researches have been carried out to reduce the emission levels and lower the fuel consumption in SI engines. Recently electronically controlled injection system is widely adapted to a passenger car to achieve these goals. Throttle body is also an important factor which influences on the emissions and engine power. In this study we redesigned a throttle body and conducted an experimental study to see the effects on engine performance and emission characteristics. We could find that idle speed control(ISC) showed stable operation characteristics as the cooling water temperature varied. And CO and HC emissions also satisfied the regulation limit.