• Title/Summary/Keyword: Identification Parameters

Search Result 1,371, Processing Time 0.029 seconds

Off-Line Parameter Identification of Permanent Magnet Synchronous Motor Using a Goertzel Algorithm

  • Yoon, Jae-Seung;Lee, Kyoung-Gu;Lee, June-Seok;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권6호
    • /
    • pp.2262-2270
    • /
    • 2015
  • Generally, internal parameters of the motors and generators can be divided to the resistance and inductance components. They can become a cause of the changing internal parameters because they have sensitive characteristics due to external conditions. The changed parameters can generate the outputs which include error values from the speed and current controllers. Also, it can bring the temperature increase and mechanical damage to the system. Therefore, internal parameters of the motors and generators need to obtain their values according to the external conditions because it can prevent the mechanical damage caused by the changed parameters. In this paper, the off-line parameter identification method is verified using the Goertzel algorithm. The motor used in the simulation and experiments is an interior permanent magnet synchronous motor (IPMSM), and the proposed algorithm is verified by the simulation and experimental results.

구조물 손상 탐지를 위한 시간 영역에서의 SI기법 (System Identification in Time Domain for Structural Damage Assessment)

  • 이해성;박승근
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.614-618
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathmatical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping. A new regularization function defined by the L$_1$-norm of the first derivative of system parameters with respect to time is proposed to alleviate the ill-posed characteristics of inverse problems and to accommodate discontinuities of system parameters in time. The time window concept is proposed to trace variation of system parameters in time.

  • PDF

Identification of flexible vehicle parameters on bridge using particle filter method

  • Talukdar, S.;Lalthlamuana, R.
    • Structural Engineering and Mechanics
    • /
    • 제57권1호
    • /
    • pp.21-43
    • /
    • 2016
  • A conditional probability based approach known as Particle Filter Method (PFM) is a powerful tool for system parameter identification. In this paper, PFM has been applied to identify the vehicle parameters based on response statistics of the bridge. The flexibility of vehicle model has been considered in the formulation of bridge-vehicle interaction dynamics. The random unevenness of bridge has been idealized as non homogeneous random process in space. The simulated response has been contaminated with artificial noise to reflect the field condition. The performance of the identification system has been examined for various measurement location, vehicle velocity, bridge surface roughness factor, noise level and assumption of prior probability density. Identified vehicle parameters are found reasonably accurate and reconstructed interactive force time history with identified parameters closely matches with the simulated results. The study also reveals that crude assumption of prior probability density function does not end up with an incorrect estimate of parameters except requiring longer time for the iterative process to converge.

Bridge modal identification based on frequency variation caused by a parked vehicle

  • He, Wen-Yu;Ren, Wei-Xin;Wang, Quan;Wang, Zuo-Cai
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.413-421
    • /
    • 2022
  • Modal parameters are the main dynamic characteristics of bridge. This study aims to propose an innovative route to estimate the modal parameters for bridges by using a parked vehicle in which mode shapes with high accuracy and spatial resolution are identified by frequency measurement. Based on the theory of dynamic modification and modal identification, the mathematical formulation between the parked mass induced frequency variation and the modal parameters of a bridge is derived. Then this mathematical formulation is extended to a parked vehicle-bridge system. The arithmetic and processes for estimating the modal parameters based on the identified frequency variation of the vehicle-bridge systems when the vehicle locates at sequentially arranged positions are presented. Finally the proposed method is applied to several simulated bridges of different types. The results indicate that it can estimate the modal parameters with high accuracy and efficiency.

A novel adaptive unscented Kalman Filter with forgetting factor for the identification of the time-variant structural parameters

  • Yanzhe Zhang ;Yong Ding ;Jianqing Bu;Lina Guo
    • Smart Structures and Systems
    • /
    • 제32권1호
    • /
    • pp.9-21
    • /
    • 2023
  • The parameters of civil engineering structures have time-variant characteristics during their service. When extremely large external excitations, such as earthquake excitation to buildings or overweight vehicles to bridges, apply to structures, sudden or gradual damage may be caused. It is crucially necessary to detect the occurrence time and severity of the damage. The unscented Kalman filter (UKF), as one efficient estimator, is usually used to conduct the recursive identification of parameters. However, the conventional UKF algorithm has a weak tracking ability for time-variant structural parameters. To improve the identification ability of time-variant parameters, an adaptive UKF with forgetting factor (AUKF-FF) algorithm, in which the state covariance, innovation covariance and cross covariance are updated simultaneously with the help of the forgetting factor, is proposed. To verify the effectiveness of the method, this paper conducted two case studies as follows: the identification of time-variant parameters of a simply supported bridge when the vehicle passing, and the model updating of a six-story concrete frame structure with field test during the Yangbi earthquake excitation in Yunnan Province, China. The comparison results of the numerical studies show that the proposed method is superior to the conventional UKF algorithm for the time-variant parameter identification in convergence speed, accuracy and adaptability to the sampling frequency. The field test studies demonstrate that the proposed method can provide suggestions for solving practical problems.

과체중 및 비만 여성에서 한방비만변증에 따른 체성분 및 대사관련 지표의 상관성 (Relation between Obesity Pattern Identification and Metabolic Parameters in Overweight and Obese Women)

  • 송미영;김호준;이명종
    • 한방비만학회지
    • /
    • 제14권1호
    • /
    • pp.24-28
    • /
    • 2014
  • Objectives: We conducted this study to analysis obesity pattern and obesity related blood parameters. Methods: A total of 64 overweight and obese (body mass index [BMI] ${\geq}23cm/kg^2$) women who had no other disease was recruited. Body composition and obesity related blood parameters were measured. Also subjects were given and filled out the Obesity pattern identification questionnaire. We analyzed the differences of body composition and blood parameters and measured correlations of BMI and blood parameters in each obesity pattern. Results: The distribution of obesity pattern was liver depression (35.6%), food accumulation (47.5%) and deficiency (pi and yang deficiency, 22.0%), in order. There were no significant differences age, body composition and obesity related blood parameters between obesity patterns. BMI and obesity related blood parameters, however, showed significant correlations depending on obesity patterns. Conclusions: We concluded that correlations between BMI and obesity related blood parameters were differed depending on obesity patterns.

상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정 (Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records)

  • Kim Jae Min;Feng. M. Q.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF

Determination of Identifiable Parameters and Selection of Optimum Postures for Calibrating Hexa Slide Manipulators

  • Park, Jong-Hyuck;Kim, Sung-Gaun;Rauf, Abdul;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2737-2742
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. While the Cartesian postures are measured completely, all of the geometric parameters can be identified to their true values. With partial pose measurements, however, few geometric parameters may not be identifiable and effectiveness of the calibration results may vary significantly within the workspace. QR decomposition of the identification Jacobian matrix can reveal the non-identifiable parameters. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type paralle manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF

Face Identification Method Using Face Shape Independent of Lighting Conditions

  • Takimoto, H.;Mitsukura, Y.;Akamatsu, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2213-2216
    • /
    • 2003
  • In this paper, we propose the face identification method which is robust for lighting based on the feature points method. First of all, the proposed method extracts an edge of facial feature. Then, by the hough transform, it determines ellipse parameters of each facial feature from the extracted edge. Finally, proposed method performs the face identification by using parameters. Even if face image is taken under various lighting condition, it is easy to extract the facial feature edge. Moreover, it is possible to extract a subject even if the object has not appeared enough because this method extracts approximately the parameters by the hough transformation. Therefore, proposed method is robust for the lighting condition compared with conventional method. In order to show the effectiveness of the proposed method, computer simulations are done by using the real images.

  • PDF

Output only structural modal identification using matrix pencil method

  • Nagarajaiah, Satish;Chen, Bilei
    • Structural Monitoring and Maintenance
    • /
    • 제3권4호
    • /
    • pp.395-406
    • /
    • 2016
  • Modal parameter identification has received much attention recently for their usefulness in earthquake engineering, damage detection and structural health monitoring. The identification method based on Matrix Pencil technique is adopted in this paper to identify structural modal parameters, such as natural frequencies, damping ratios and modal shapes using impulse vibration responses. This method can also be applied to dynamic responses induced by stationary and white-noise inputs since the auto- and cross-correlation function of the two outputs has the same form as the impulse response dynamic functions. Matrix Pencil method is very robust to noise contained in the measurement data. It has a lower variance of estimates of the parameters of interest than the Polynomial Method, and is also computationally more efficient. The numerical simulation results show that this technique can identify modal parameters accurately even if the noise level is high.