• 제목/요약/키워드: Identification Parameters

검색결과 1,371건 처리시간 0.024초

A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies

  • Lei, Ying;Chen, Feng;Zhou, Huan
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.57-80
    • /
    • 2015
  • Extended Kalman Filter (EKF) has been widely used for structural identification and damage detection. However, conventional EKF approaches require that external excitations are measured. Also, in the conventional EKF, unknown structural parameters are included as an augmented vector in forming the extended state vector. Hence the sizes of extended state vector and state equation are quite large, which suffers from not only large computational effort but also convergence problem for the identification of a large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural damage detection due to the limited computational power and storage capacities of smart sensors. In this paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as unknown external excitations. In stage-one, structural state vector and unknown structural parameters are recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables to be estimated in each step is reduced and the identification of structural system and unknown excitation are conducted sequentially, which simplify the identification problem and reduces computational efforts significantly. Both numerical simulation examples and lab experimental tests are used to validate the proposed algorithm for the identification of structural damage as well as unknown excitations for structural health monitoring.

퍼지모델의 새로운 설정 방법 (A New Identification Method for a Fuzzy Model)

  • 박민기;지승환;박민용
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.70-78
    • /
    • 1995
  • 입출력 데이터를 이용한 퍼지모델의 설정은 구조 설정과 변수 설정으로 나누어진다. 본 논문에서는 기존 방법의 문제점을 해결하고 퍼지모델의 이러한 구조와 변수를 설정하는 새로운 방법을 제안한다. 입출력 데이터가 주어지면, 후건부 변수는 선형성과연속성을 고려하여 휴(Hough) 변환과클러스터링 방법에 의해 각각 설정된다. 또한 경사 하강법(Gradient descent method)을 사용하여 퍼지모델 변수의 미세조정을 행한다. 마지막으로 단일 입출력 시스템에 대하여 시뮬레이션을 통해 제안된 방법의 유효성을 보인다.

  • PDF

IDENTIFICATION OF THERMODYNAMIC PARAMETERS OF ARCTIC SEA ICE AND NUMERICAL SIMULATION

  • Xiw, Chao;Feng, Enmin;Li, Zhijun;Peng, Lu
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.519-530
    • /
    • 2008
  • This paper studies the multi-domain coupled system of one dimensional Arctic temperature field and establishes identification model about the thermodynamic parameters of sea ice (heat storage capacity, density and conductivity) by the so-called output least-square estimate according to the temperature data acquired by a monitor buoy installed in the Arctic ocean. By the optimal control theory, the existence and dependability of weak solution and the identifiability of identification model have been given. Moreover, necessary optimality condition is proposed. Furthermore, the optimal algorithm for the identification model is constructed. By using the optimal thermodynamic parameters of Arctic sea ice, the numerical simulation is implemented, and the numerical results of temperature distribution of Arctic sea ice are demonstrated.

  • PDF

최적 알고리즘과 합성 성능지수에 의한 퍼지-뉴럴네트워크구조의 설계 (Design of Fuzzy-Neural Networks Structure using Optimization Algorithm and an Aggregate Weighted Performance Index)

  • 윤기찬;오성권;박종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 G
    • /
    • pp.2911-2913
    • /
    • 1999
  • This paper suggest an optimal identification method to complex and nonlinear system modeling that is based on Fuzzy-Neural Network(FNN). The FNN modeling implements parameter identification using HCM algorithm and optimal identification algorithm structure combined with two types of optimization theories for nonlinear systems, we use a HCM Clustering Algorithm to find initial parameters of membership function. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using optimal identification algorithm. The proposed optimal identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregate objective function(performance index) with weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

ESTIMATING CROWN PARAMETERS FROM SPACEBORNE HIGH RESOLUTION IMAGERY

  • Kim, Choen;Hong, Sung-Hoo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.247-249
    • /
    • 2007
  • Crown parameters are important roles in tree species identification, because the canopy is the aggregate of all the crowns. However, crown measurements with spaceborne image data have remained more difficult than on aerial photographs since trees show more structural detail at higher resolutions. This recognized problem led to the initiation of the research to determine if high resolution satellite image data could be used to identify and classify single tree species. In this paper, shape parameters derived from pixel-based crown area measurements and texture features derived from GLCM parameters in QuickBird image were tested and compared for individual tree species identification. As expected, initial studies have shown that the crown parameters and the canopy texture parameters provided a differentiating method between coniferous trees and broad-leaved trees within the compartment(less than forest stand) for single extraction from spaceborne high resolution image.

  • PDF

하이브리드 동정 알고리즘에 의한 최적 퍼지 시스템에 관한 연구 (A Study on Optimal fuzzy Systems by Means of Hybrid Identification Algorithm)

  • 오성권
    • 한국지능시스템학회논문지
    • /
    • 제9권5호
    • /
    • pp.555-565
    • /
    • 1999
  • 복잡하고 비선형적인 시스템의 규칙베이스 퍼지모델링을 위하여 퍼지시스템의 최적 동정알고리즘을 연구한다. 비선형 시스템은 퍼지모델의 입력변수와 퍼지 입력공간 분할에 의한 구조동정과 파라미터 동정을 통해 표현된다. 본 논문에서 규칙베이스 퍼지모델링은 비선형 시스템을 위해 퍼지추론방법과 두 종류의 최적화 이론의 결합에 의한 하이브리드 구졸를 이용하여 시스템 구조와 파라미터동정을 수행한다. 퍼지모델의 추론방법은 간략추론 및 선형추론에 의한다. 제안된 하이브리드 최적 동정 알고리즘은 유전자 알고리즘과 개선된 콤플렉스 방법을 이용한다. 여기서 유전자 알고리즘은 전반부 퍼지규칙의 멤버쉽함수의 초기 파라미터들을 결정하기 위해 사용되고 강력한 자동동조 알고리즘인 개선된 콤플렉스 방법은 정교한 파라미터들을 얻기 위해 수행된다. 따라서 최적 퍼지모델을 위해 전반부 파라미터 동정에는 하이브리드형의 최적 알고리즘을 이용하고 후반부 동정에는 최소자승법을 이용한다. 또한 학습과 테스트 데이터에 의해 생성된 퍼지모델의 성능결과 사이의 상호균형을 얻기 위해 하중계수를 가지는 합성 성능지수를 제안한다. 제안된 모델의 성능평가를 위해 두가지 수치적 예를이용한다.

  • PDF

A practical identification method for robot system dynamic parameters

  • Kim, Sung-wun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.705-710
    • /
    • 1989
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated motor and manipulator is derived. An off line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of robot was tested. The trajectory errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

로보트시스템 동적 변수의 실용적인 추정 방법 (A Practical Identification Method for Robot System Dynamic Parameters)

  • Kim, Sungkwun
    • 대한전기학회논문지
    • /
    • 제39권7호
    • /
    • pp.765-772
    • /
    • 1990
  • A practical method of identifying the inertial parameters, viscous friction and Coulomb friction of a robot is presented. The parameters in the dynamic equations of a robot are obtained from the measurements of the command voltage and the joint position of the robot. First, a dynamic model of the integrated system of the mainpulator and motor is derived. An off-line parameter identification procedure is developed and applied to the University of Minnesota Direct Drive Robot. To evaluate the accuracy of the parameters the dynamic tracking of the robot was tested. The trajectroy errors were significantly reduced when the identified dynamic parameters were used.

  • PDF

최적화 기법을 이용한 점탄성물질의 유리미분모델 물성값 추정 (Identification of fractional-derivative-model parameters of viscoelastic materials using an optimization technique)

  • 김선용;이두호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1235-1242
    • /
    • 2006
  • Viscoelastic damping materials are widely used to reduce noise and vibration because of its low cost and easy implementation, for examples, on the body structure of passenger cars, air planes, electric appliances and ships. To design the damped structures, the material property such as elastic modulus and loss factor is essential information. The four-parameter fractional derivative model well describes the nonlinear dynamic characteristics of the viscoelastic damping materials with respect to both frequency and temperature with fewer parameters than conventional spring-dashpot models. However the identification procedure of the four-parameter is very time-consuming one. An efficient identification procedure of the four-parameters is proposed by using an FE model and a gradient-based numerical search algorithm. The identification procedure goes two sequential steps to make measured FRFs coincident with simulated FRFs: the first one is a peak alignment step and the second one is an amplitude adjustment. A numerical example shows that the proposed method is efficient and robust in identifying the viscoelastic material parameters of fractional derivative model.

  • PDF

Identification of the Mechanical Resonances of Electrical Drives for Automatic Commissioning

  • Pacas Mario;Villwock Sebastian;Eutebach Thomas
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.198-205
    • /
    • 2005
  • The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.