• Title/Summary/Keyword: Ideal Forming

Search Result 70, Processing Time 0.027 seconds

Non-steady Ideal Forming in Plane Strain (평면 변형 하에서의 비정상 이상 공정 이론)

  • ;;Owen Richmond
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.66-69
    • /
    • 2002
  • In the ideal forming theory(1), which has been deviously developed as a direct method for optimizing forming process, material elements are required to deform following the minimum plastic work path (or the proportional true strain path). Besides the general theory(2,3), specific ideal forming theories have been developed for membrane sheet forming(4) as well as two-dimensional steady bulk forming(5-7). In this work, the ideal forming theory was successfully applied for non-steady bulk forming under the plane strain condition. Here, the shape change complying with the minimum plastic work path, was effectively described by developing a numerical code based on the characteristic method. Numerical results obtained for a specific industrial part also include the optimum pre-forming shape and its evolving shape change to the final shape as well as the boundary traction history.

  • PDF

Blank Design for Sheet Metal Product Based on Direct Design Method (직접설계법에 의한 박판부품의 초기형상설계)

  • 윤정환;김상국;정관수;연의정
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.598-603
    • /
    • 2000
  • In order to improve trial-and-error based conventional practices for optimizing forming processes, a direct design method to guide iterative design practices, called the ideal forming theory, has been previously developed. In the theory, material elements are required to deform following the minimum Plastic work Path. The theory can be used to determine the ideal initial blank shape needed to best achieve a specified final shape while resulting in optimum strain distributions. In this work, the direct design method based on the ideal forming theory was applied to design initial design shape for VCR deck chassis. Based on the solution of the ideal forming theory, FEM analysis was utilized to evaluate an optimum blank shape to be formed without tearing. Simulation results are in good agreement with experimental data. It was shown that the proposed sequential design procedure based on direct design method and FEM can be successfully applied to optimize the die design Procedure of sheet metal forming processes.

  • PDF

Nonsteady Plane-strain ideal forming with elastic dead zone (탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론)

  • Lee W.;Chung K.;Richmond Owen
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.190-193
    • /
    • 2004
  • Ever since the ideal forming theory has been developed fur process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, for a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

  • PDF

Nonsteady Plane-strain Ideal Forming without Elastic Dead-zone

  • Chung, Kwansoo;Lee, Wonoh;Kang, Tae Jin;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.120-127
    • /
    • 2002
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, for bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was made under the plane-strain condition. In the ideal flow, material elements deform fellowing the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-strain flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, schemes to optimize preform shapes for a prescribed final part shape and also to define the evolution of shapes and frictionless boundary tractions were developed. Discussions include numerical calculations made for a real automotive part under forging.

A Study on the Intial Blank Design Using Ideal Forming Theory (이상적 변형이론을 이용한 박판 초기형상 설계에 관한 연구)

  • 박상후;윤정환;양동열;김용환;이장희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.4
    • /
    • pp.207-218
    • /
    • 1997
  • A new blank design method is introduced to predict the blank shape and the strain distribution in the sheet metal forming process. This method deals with only one step from the final shape to the initial blank using the ideal forming theory. Based on this theory, a three-dimensional membrane finite element code has been developed to design an initial blank in the sheet metal forming process. In this paper, the designs of initial blanks for forming a cylindrical cup, a rectangular cup, and a front fender are presented as examples. Also, it compares the two shapes, the target shape with the shape which is deformed from the initial blank using the FEM analysis code. The results illustrate the information that this direct design code is useful in the preliminary design state.

  • PDF

Nonsteady Plane-strain Ideal Forming with Elastic Dead Zone (탄성 변형 영역을 고려한 비정상 평면 변형 이상 공정 이론)

  • Lee W.;Chung K.;Alexandrov S.;Kang T.J.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.540-545
    • /
    • 2004
  • Ever since the ideal forming theory has been developed for process design purposes, application has been limited to sheet forming and, fur bulk forming, to two-dimensional steady flow. Here, application for the non-steady case was performed under the plane-strain condition based on the theory previously developed. In the ideal flow, material elements deform following the minimum plastic work path (or mostly proportional true strain path) so that the ideal plane-stram flow can be effectively described using the two-dimensional orthogonal convective coordinate system. Besides kinematics, fur a prescribed final part shape, schemes to optimize a preform shape out of a class of initial configurations and also to define the evolution of shapes and boundary tractions were developed. Discussions include the two problematic issues on internal tractions and the non-monotonous straining. For demonstration purposes, numerical calculations were made for a bulk part under forging.

Incorporation of Sheet Forming Effects in Crash Simulations Using Ideal Forming Theory and Hybrid Membrane/shell Method (이상공정이론 및 하이브리드 박막/쉘 방법을 이용한 박판성형품의 충돌거동 해석)

  • 류한선;정관수;윤정환;한정석;윤재륜;강태진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.148-151
    • /
    • 2003
  • In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet forming process effects were incorporated in simulations using the ideal forming theory mixed with the 3D hybrid membrane/shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost-effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet forming effects to crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the non-quadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6114-T4 aluminum alloy sheets.

  • PDF

Plane-strain bending based on ideal flow theory (이상 유동 이론에서의 평면 변형 벤딩)

  • Alexandrov Sergei;Lee W.;Chung K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.233-236
    • /
    • 2004
  • The major objective of this paper is to clarify the effect of constitutive laws on bulk forming design based on the ideal flow theory. The latter theory is in general applicable for perfectly/plastic materials. However, its kinematics equations constitute a closed-form system, which are valid for any incompressible materials, therefore enabling us to extend design solutions based on the perfectly/plastic constitutive law to more realistic laws with rate sensitive hardening behavior. In the present paper, several constitutive laws commonly accepted for the modeling of cold and hot metal forming processes are considered and the effect of these laws on one particular plane-strain design is demonstrated. The closed form solution obtained describes a non-trivial nonsteady ideal process. The design solutions based on the ideal flow theory are not unique. To achieve the uniqueness, the criterion that the plastic work required to deform the initial shape of a given class of shapes into a prescribed final shape attains its minimum is adopted. Comparison with a non-ideal process is also made.

  • PDF

Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming (판재성형 해석시 금형내의 공기거동 모델링)

  • Choi, Kwang-Yong;Kim, Heon-Young
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.377-386
    • /
    • 2011
  • During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

Development of Roll Forming Machine Using TRIZ (TRIZ를 이용한 롤 포밍 머신의 개발)

  • Song, Joon-Ho;Oh, Dae-Jin;Yoo, Seung-Hyun;Choi, Myung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1548-1552
    • /
    • 2007
  • The roll forming machines currently used in industries require manual change of individual rolls taking 30 to 60 minutes of operation shutdown, This in turn reduces the operational efficiency by considerable margin and has one of the major negative effect on the overall productivity. To improve the operational efficiency of the existing roll forming machine, current manual roll changing process needs automatation to save considerable amount of time. In this study, TRIZ is adopted in the development of new roll forming machine. The Ideal Final Result (IFR) was set up initially and the fundamental causes were examined by Root Cause Analysis. The final proposed concept was drawn from the application of 40 invention principles of TRIZ.

  • PDF