DOI QR코드

DOI QR Code

Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming

판재성형 해석시 금형내의 공기거동 모델링

  • 최광용 (강원대학교 기계의용공학과) ;
  • 김헌영 (강원대학교 기계의용공학과)
  • Received : 2011.07.06
  • Accepted : 2011.07.21
  • Published : 2011.08.01

Abstract

During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

Keywords

References

  1. H. J. Kim, B. H. Jeon, H. Y. Km, J. J. Kim, 1993, Finite element analysis liquid bulge forming process of T-shaped pipe by an explicit code, Advanced Technology of Plasticity, pp.545-550.
  2. H. Y. Kim, Y. S. Shin, K. H. Kim, Won Seok Cho, 1998, Stamping Analysis and Die Design of laser Welded Automotive Body, Trans. Mater. Process., Vol. 7, No. 4, pp. 382-392.
  3. H. Y. Kim, H.T. Lim, H.J. Kim, W.H. Lee and C. D. Park, 2004, 3-Dimensional Finite Element Analysis of Hemming for Automotive outer Panels by Part Model Assembling Method, Trans. Mater. Process., Vol. 13, No. 2, pp. 115-121. https://doi.org/10.5228/KSPP.2004.13.2.115
  4. T. Belytschko, J. I. Lin, C. S. Tsay, 1984, Explicit algorithms for the nonlinear dynamics of shells, Computer Methods in Applied Mechanics and Engineering, Vol. 42, Issue 2, pp. 225-251. https://doi.org/10.1016/0045-7825(84)90026-4
  5. D. Y. Lee, B. S. Choi, J. H. Hwang, I. K. Baek, K. Y. Choi, 2009, Springback Control of an Automotive Surround Molding part Using Automatic Die Compensation Module, Trans. Mater. Process., Vol. 18, No. 3, pp. 210-216. https://doi.org/10.5228/KSPP.2009.18.3.210
  6. S. Y. Jung, S. J. Hwang, W. G. Park, C. Kim, 2008, Development of an Automated System for Predicting Shape and Volume of Air Pocket on the Draw Die, J. Kor. Soc. Prec. Eng., Vol. 25, No. 1, pp. 72-78.
  7. S. J. Hwang, W. G. Park, C. Kim, S. W. Oh, N. Y. Cho, 2006, Flow Analysis of the Air Pocket in draw Die, Proc. Natl. Cong. Fluids Eng., pp. 345-348.
  8. H. Y. Kim, H.T. Lim, 2003, Die Design for Tube Hydroforming Process Considering Preforming Effect, Trans. Mater. Process., Vol. 12, No. 5, pp. 433-439. https://doi.org/10.5228/KSPP.2003.12.5.433
  9. H. Y. Kim, H.T. Lim, S. H. Hwang, K. D. Lee, W.S. Lee and D.Y. Kim, 2007, Hot Air Forming Analysis of Aluminum Tube, Proc. Kor. Soc. Tech. Plast. Conf., pp. 116-119.
  10. H. Y. Kim, S. K. Lee, Y. J. Shin, 1996, Finite element Modeling of Folded Airbag and Analysis of Deployment Process, J. Kor. Soc. Auto. Eng., Vol. 4, No. 6, pp. 236-246.
  11. E. Onate, S. Idelsohn, O. C. Zienkiewics, R. L. Tayler, 1996, A Finite Point Method in Computational Mechanics, Int. J. Num. Met. Eng., Vol. 39, pp. 3839-3866. https://doi.org/10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
  12. E. Onate, S. Idelsohn, 1998, A mesh-free finite point method for advective-diffusive transport and fluid flow problems, Comp. Mec., 21, pp.283-292. https://doi.org/10.1007/s004660050304
  13. E. Onate, S. Idelsohn, 2001, A finite point method for elasticity problems, Comp. Struc., 79, pp. 2151-2163. https://doi.org/10.1016/S0045-7949(01)00067-0
  14. M. Alizadeh, S. A. J. Jahromi, 2008, Using Finite Point Method for the Numerical Simulation of Heat Transfer Coupled with Microsegregation during Continuous Casting, Int. J. ISSI, Vol. 5 No. 2, pp. 1-7.
  15. J. Kuhnert, 1999, General Smoothed Particle Hydrodynamics, PhD thesis, Univ. Kaiserslautern, Kaiserslautern.
  16. J. Kuhnert, An Upwind Finite Pointset Method (FPM) for Compressible Euler and Navier-Strokes, ITWM.
  17. A. Trameconto, 2003, Finite Point Method : A Mesh-Free Approach to model Airbag Inflation model , ICD Conference.
  18. E. Gai, H. Zhang, 2005, Finite point method: a new approach to model the inflation of side curtain airbags, Int. J. Crash., Vol. 10, pp. 445-450. https://doi.org/10.1533/ijcr.2005.0356
  19. H. Zhang, S. Raman, M. Gopal, T. Y. Han, 2004 Evaluation and Comparison of CFD Integrated Airbag Models in LS-DYNA, MADMO and PAM-CRASH, SAE int., ISBN 0-7680-1319-4.
  20. Introduction to Fluid Mechanics, Fox & McDonald
  21. $PAM-STAMP^{TM} Manual
  22. $PAM-SAFE^{TM} Manual