• Title/Summary/Keyword: Ice core

Search Result 67, Processing Time 0.225 seconds

The effects of consolidation time on the strength and failure behavior of freshwater ice rubble

  • Shayanfar, Hamid;Bailey, Eleanor;Pritchett, Robert;Taylor, Rocky
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • Medium-scale tests were conducted to measure and observe the strength and failure behavior of freshwater ice rubble. A custom box measuring $3.05m{\times}0.94m{\times}0.94m$, with Plexiglas walls was built so that failure mechanisms could be observed. Ice rubble beams of nominal thickness 50 cm were produced by placing randomly sized ice pieces into the box filled with water at its freezing temperature. After the specified consolidation time, ranging between 0.2 and 70.5 h, the ice rubble beam was deformed by pushing a platen vertically downwards though the center of the beam until failure. For consolidation times less than 4 h, the ice beam failed progressively and tended to fail by shearing on macroscopic scale. At times greater than 4 h the beam failed by bending. The change in failure behaviour has been attributed to the degree of bonding between ice blocks.

Measurement of 137Cs in Ice Core Samples from Antarctica

  • Lim, S.I.;Kim, D.H.;Huh, J.Y.;Lee, J.;Hahn, I.S.;Han, Y.C.;Hur, S.D.;Hwang, H.J.;Kang, W.G.;Kim, Y.D.;Lee, E.K.;Lee, M.H.
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1263-1268
    • /
    • 2018
  • Three different ice core samples from Antarctica were analyzed to identify activity concentrations of radioactive isotopes. Tracking migration of radioactive isotopes to Antarctica can provide a key clue to understand global environmental changes caused by radiation exposures because the Antarctic ice cores can preserve unique characteristics of various environmental conditions. We are particularly interested in the $^{137}Cs$ nucleus, because it is closely related to radiation exposure from nuclear power plant accidents and nuclear bomb tests. With its half life of $30.17{\pm}0.03$ years, $^{137}Cs$ can also be used to assess the age of sedimentation occurring after around the year 1945. We selected three ice core samples, called Tarn8, Styx27, and H25, from different time periods; the Tarn8 sample is known to be from earlier than ~ 1000 AD, the Styx27 sample is approximately from the year 1945, and the H25 sample is from the year 2012. Radioactive isotope measurements of the ice core samples were performed using a 100% HPGe detector at Cheongpyeong Underground Radiation Laboratory (CURL). We measured the activity of $^{137}Cs$ in the H25 sample to be $0.98{\pm}0.82mBq/kg$. Although the activity has a large uncertainty mainly due to the limited sample quantity, the $^{137}Cs$ isotopes in the Antarctic ice core were measured for the first time in Korea.

The Melting Process in an Ice-Ball Capsule (아이스볼내의 융해과정에 대한 해석)

  • Suh, J.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.577-588
    • /
    • 1995
  • A numerical study is made on the melting process of an unconstrained ice inside an isothermal ice-ball capsule. The unmelted ice core is continuously ascending on account of buoyancy forces. Such a buoyancy-assisted melting is commonly characterized by the existence of a thin liquid film above the ice core. The present study is motivated to present a full-equation-based analysis of the influences of the initial subcooling and the natural convection on the fluid flow associated with the buoyancy-assisted melting. In the light of the solution strategy, the present study is substantially distinguished from the existing works in that the complete set of governing equations in both the melted and unmelted regions are resolved in one domain. Numerical results are obtained by varying the wall temperature and initial temperature. The present results reported the transition of the flow pattern in a spherical capsule, as the wall temperature was increased over the density inversion point. In addition, time wise variation of the shapes for the liquid film and the lower ice surface, the time rate of change in the melt volume fraction and the melting distance at symmetric line is analyzed and is presented.

  • PDF

A Study on the Skin Temperature and Discomfort According to the Local Application of Ice Bag. (얼음주머니의 국소적 적용에 따른 피부체온 및 주관적 불편감에 관한 연구)

  • Kim Keum-Soon;Bang Kyung-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.1 no.1
    • /
    • pp.37-49
    • /
    • 1994
  • The purpose of this study was to measure the oral temperature, skin temperature, and subjective discomfort according to the application time of ice bag on thigh, head, and abdomen. This study was also intended to suggest nursing principles about ice bag application by exploring the recovery time of skin temperature after the removal of ice bag. The design of this study was $8{\times}3$ factorial design with one sample repeated measure. Here, the application time of ice bag(criteria, 5min, 10min, 20min, 30min, 40min, 50min, 60min) and the application site of ice bag(thigh, head, abdomen) were independent variables. The subjects were 10 university woman students, and data collection was made from July, 1 to August 30, 1992. Rubber ice bag halfly filled with ice was covered with towel and applied on thigh, head and abdomen in other three days. Before applying the ice bag, oral temperature and skin temperature were checked for criteria. After ice bag was applied, skin temperature, oral temperature and VAS score were checked at first 5 minutes elapsed, and every 10 minutes until 60 minutes. After that, ice bag was removed, and oral temperature and skin temperature were also measured every ten minutes until 60 minutes. In this study, skin temperature and core temperature were measured by thermistor probe, and subjective discomfort was measured by 200mm VAS (Visual Analogue Scale). Some of the findings were as follows : 1. There were significant differences in skin temperature among the three application sites of ice bag as time go by. It was most decreased to $15.87^{\circ}C$ in thigh, and $19.47^{\circ}C$ in abdomen at 50 minutes after the application of ice bag, whereas $26.1^{\circ}C$ at 40 minutes in head. Before the application of ice bag, skin temperature showed significant differences in three sites, so that they were compared after the criteria was covariated. In other words, there was significantly more decrease of skin temperature in thigh and abdomen than head, after ice bag was applied for 20 minutes and more. 2. There was no significant difference in core temperature among the three application sites of ice bag during the time of application 3. There was no significant difference in subjective discomfort (VAS) among the three application sites of ice bag. 4. After the removal of ice bag, the recovery of skin temperature was significantly different in three sites during first 30 minutes. In head, skin temperature came up to criteria at 30 minutes after the removal of ice bag, but it was not recovered In thigh and abdomen even 60 minutes elapsed. 5. After the removal of ice bag, there was no significant difference in oral temperature among the three application sites of ice bag. 6. There was significant correlation between the skin temperature and VAS score only in thigh. In conclusion, it is suggested that head in more suitable site for the application of ice bag if it is used for the relief of fever or pain. When we apply ice bag on thigh or abdomen for the relief of pain, careful attention is required.

  • PDF

Establishment of an Ice Core Processing Method and Analytical Procedures for Fundamental Proxies (빙하코어의 전처리 방법 및 기초 프록시 분석법 확립)

  • Jun, Seong Joon;Hong, Sang Bum;Hur, Soon Do;Lee, Jeonghoon;Kang, Jung-Ho;Hwang, Hee Jin;Chung, Ji Woong;Jung, Hye Jin;Han, Changhee;Hong, Sungmin
    • Ocean and Polar Research
    • /
    • v.36 no.1
    • /
    • pp.13-24
    • /
    • 2014
  • We established the first complete ice core processing method and analytical procedures for fundamental proxies, using a 40.2 m long ice core drilled on the Mt. Tsambagarav glacier in the Mongolian Altai mountains in July 2008. The whole core was first divided into two sub ice core sections and the measurements of the visual stratigraphy and electrical conductivity were performed on the surface of these sub core sections. A continuous sequence of samples was then prepared for chemical analyses (stable isotope ratios of oxygen ($^{18}O/^{16}O$) and hydrogen ($^2H/^1H$), soluble ions and trace elements). A total of 29 insoluble dust layers were identified from the measurement of visual stratigraphy. The electrical conductivity measurement (ECM) shows 11 peaks with the current more than 0.8 ${\mu}A$ Comparing the profiles of $SO_4{^{2-}}$ and $Cl^-$ concentrations to correlate with known volcanic eruptions, the first two ECM peaks appear to be linked to the eruptions (January and June 2007) of Kliuchevskoi volcano on the Kamchatka Peninsula of Russia, which supports the reliability of our ECM data. Finally, the composition of stable isotopes (${\delta}^{18}O$ and ${\delta}D$) shows a well-defined seasonal variation, suggesting that various chemical proxies may have been well preserved in the successive ice layers of Tsambagarav ice core. Our ice core processing method and analytical procedures for fundamental proxies are expected to be used for paleoclimate and paleoenvironmental studies from polar and alpine ice cores.

Major Ionic Species in An Antarctic Snow Pit (남극 Snow Pit 중에 존재하는 주요 이온종에 관한 연구)

  • 박주영;홍성민;이강웅
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.438-439
    • /
    • 1999
  • 남극은 인위적인 오염원에서 멀리 떨어져 있고 가장 깨끗한 환경을 유지하고 있기 때문에 배경환경으로써 평가되어져 왔다. 따라서 ice core 안에서, 시간에 따른 용해성 이온종들의 조성 변화는 지구 대기조성 변화를 나타내는 것으로 알려져있다. 특히 ice cores나 눈 속에 존재하는 황산염과 MSA(Methan Sulfonic Acid)는 해양생물의 활동도 변화론 연구하는데 있어 유용한 도구를 제공해주며, 그것은 과거 기상적 변화와 관련이 있다.(중략)

  • PDF

Different Climate Regimes Over the Coastal Regions of the Eastern Antarctic Ice Sheet

  • Cunde, Xiao;Dahe, Qin;Zhongqin, Li;Jiawen, Ren;Allison, Ian
    • Ocean and Polar Research
    • /
    • v.24 no.3
    • /
    • pp.227-236
    • /
    • 2002
  • For ten firn cores, from both the eastern and the western side of Lambert Glacier basin (LGB), snow accumulation rate and isotopic temperature were measured far the recent 50 years. Results show that snow accumulation for five cores over the eastern side of LGB (GC30, GD03, GD15, DT001, and DT085) at Wilks Land and Princess Elizabeth Land increases, whereas it decreases at the western side (Core E, DML05, W200, LGB 16, and MGA) at Dronning Maud Land, Mizuho Plateau and Kamp Land. For the past decades, the increasing rate was $0.34-2.36kg\;m^{-2}a^{-1}$ at the eastern side and the decreasing rate was $-0.01\;-\;-2.36kg\;m^{-2}\;a^{-1}$ at the western side. Temperatures at the eastern LGB were also increased with the rate of $0.02%o\;a^{-l}$. At the western LGB it was difficult to see clear trends, which were confirmed by Instrumental temperature records at coastal stations. Although statistic analysis and modeling results display that both surface temperature and accumulation rate has increased trends in Antarctic ice sheet during 1950-2000, the regional distributions were much more different for different geographic areas. We believe that ice-core records at Wilks Land and Princess Elizabeth Land reflect the real variations of SST and moisture change in the southern India Ocean. For the Kamp Land and Dronning Maud Land, however circulation pattern was different, by which the climate was more complicated. The International Trans-Antarctic Scientific Expedition (ITASE) aimed to reveal an overall spatial pattern of climate change over Antarctic ice sheet for the past 200 years. This study points the importance of continental to regional circulation to annual-decadal scale climate change in Antarctica.

On the Chemical Evolution of Collapsing Starless Cores

  • Seo, Young-Min;Lee, Jeong-Eun;Kim, Jong-Soo;Hong, Seung-Soo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.73.2-73.2
    • /
    • 2010
  • In order to understand internal dynamics of starless cores, molecular line emissions are usually observed. From profiles of the molecular lines, internal motions of starless cores have been deduced using a simple radiative transfer model such as the two-layer model (Myers et al.1996). This brings complexities arising from the chemical evolution. The motivation of this study is to follow the chemical evolution of a starless core that goes through gravitational contraction. For this purpose, we have performed hydrodynamical simulations with a marginally unstable Bonnor-Ebert sphere as an initial condition. We follow the chemical evolution of this core with changing conditions such as the chemical reaction rate at the dust surface and the strength of radiation field that penetrate into the core. At the core center, the molecules suffer from a higher degree of molecular depletion on the dust covered by ice rather than on the bare silicate dust. The stronger radiation field dissociates more molecules at the core envelope. From analysis on the line profile using the two-layer model, we found that the speed of inward motion deduced from the HCN F = 2-1 line adequately traces the true infall speed, when the dust is covered by ice and the core is exposed to the diffuse interstellar radiation field. Under different conditions, the two-layer model significantly underestimate the infall speed.

  • PDF

Simulation of Ice Ring Formation around Cryogenic Underground Storage Cavern using Hydro-Thermal Coupling Method (극저온 지하저장고 주변 ice ring 생성 모델링을 위한 열-수리 해석)

  • Jung Yong-Bok;Park Chan;Chung So-Keul;Jeong Woo-Cheol;Kim Ho-Yeong
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.241-250
    • /
    • 2006
  • Ice ring formation, one of the core techniques in LNG storage in a lined rock cavern, is investigated through hydro-thermal coupled analysis. An ice ring acts as a secondary barrier in case of leakage of cryogenic liquid and as a primary barrier for groundwater intrusion into an LNG cavern. Therefore, the thickness and location of the ice ring are crucial factors for the safe operation of an LNG storage cavern, especially for maintaining the integrity of a primary barrier composed of concrete, PU foam, and steel membrane. Through numerical analyses, the position and thickness of the ice ring are estimated, and the temperature and groundwater level are compared with measured values. The temperature md groundwater level by numerical analyses show good agreement with the field measurements when temperature-dependent properties and phase change are taken into account. The schemes used in this paper can be applied for estimation of ice ring formation in designing a full-scale LNG cavern.