DOI QR코드

DOI QR Code

Establishment of an Ice Core Processing Method and Analytical Procedures for Fundamental Proxies

빙하코어의 전처리 방법 및 기초 프록시 분석법 확립

  • Jun, Seong Joon (Department of Ocean Sciences, College of Natural Sciences, Inha University) ;
  • Hong, Sang Bum (Korea Polar Research Institute, KIOST) ;
  • Hur, Soon Do (Korea Polar Research Institute, KIOST) ;
  • Lee, Jeonghoon (Department of Science Education, College of Education, Ewha Womans University) ;
  • Kang, Jung-Ho (Korea Polar Research Institute, KIOST) ;
  • Hwang, Hee Jin (Korea Polar Research Institute, KIOST) ;
  • Chung, Ji Woong (Korea Polar Research Institute, KIOST) ;
  • Jung, Hye Jin (Korea Polar Research Institute, KIOST) ;
  • Han, Changhee (Department of Ocean Sciences, College of Natural Sciences, Inha University) ;
  • Hong, Sungmin (Department of Ocean Sciences, College of Natural Sciences, Inha University)
  • 전성준 (인하대학교 자연과학대학 해양과학과) ;
  • 홍상범 (한국해양과학기술원 부설 극지연구소) ;
  • 허순도 (한국해양과학기술원 부설 극지연구소) ;
  • 이정훈 (이화여자대학교 사범대학 과학교육과) ;
  • 강정호 (한국해양과학기술원 부설 극지연구소) ;
  • 황희진 (한국해양과학기술원 부설 극지연구소) ;
  • 정지웅 (한국해양과학기술원 부설 극지연구소) ;
  • 정혜진 (한국해양과학기술원 부설 극지연구소) ;
  • 한창희 (인하대학교 자연과학대학 해양과학과) ;
  • 홍성민 (인하대학교 자연과학대학 해양과학과)
  • Received : 2013.12.26
  • Accepted : 2014.03.13
  • Published : 2014.03.30

Abstract

We established the first complete ice core processing method and analytical procedures for fundamental proxies, using a 40.2 m long ice core drilled on the Mt. Tsambagarav glacier in the Mongolian Altai mountains in July 2008. The whole core was first divided into two sub ice core sections and the measurements of the visual stratigraphy and electrical conductivity were performed on the surface of these sub core sections. A continuous sequence of samples was then prepared for chemical analyses (stable isotope ratios of oxygen ($^{18}O/^{16}O$) and hydrogen ($^2H/^1H$), soluble ions and trace elements). A total of 29 insoluble dust layers were identified from the measurement of visual stratigraphy. The electrical conductivity measurement (ECM) shows 11 peaks with the current more than 0.8 ${\mu}A$ Comparing the profiles of $SO_4{^{2-}}$ and $Cl^-$ concentrations to correlate with known volcanic eruptions, the first two ECM peaks appear to be linked to the eruptions (January and June 2007) of Kliuchevskoi volcano on the Kamchatka Peninsula of Russia, which supports the reliability of our ECM data. Finally, the composition of stable isotopes (${\delta}^{18}O$ and ${\delta}D$) shows a well-defined seasonal variation, suggesting that various chemical proxies may have been well preserved in the successive ice layers of Tsambagarav ice core. Our ice core processing method and analytical procedures for fundamental proxies are expected to be used for paleoclimate and paleoenvironmental studies from polar and alpine ice cores.

본 연구에서는 선진국형의 종합적인 빙하코어 연구를 수행하기 위해서 요구되는 빙하시료 전처리 방법 설정과 기초 프록시 분석 기술을 확립하였다. 빙하코어 시료는 2008년 6월에 국제공동으로 몽골 알타이 산맥의 참바가라브산에서 시추한 40.2 m 길이의 빙하코어를 활용하였다. 빙하코어의 기초 프록시인 시각적 층위구분과 ECM 측정은 1차 절삭한 빙하코어의 절단면에서 수행하였으며, 2차 절삭과정을 통해 물 안정동위원소 분석용 시료 1,935개와 화학적 프록시 분석을 위한 시료 374개를 확보하였다. 전체 빙하코어의 시각적 층위구분 결과 총 29개의 불용성 입자층이 관찰되었으며, ECM 측정으로 11개의 ECM 신호 피크를 찾아냈다. 극지연구소에서 제작한 용융장치를 활용하여 분석한 $SO_4{^{2-}}$$Cl^-$의 농도와 상부 0.7 m와 1.2 m 깊이의 ECM 신호 피크의 비교 결과는 이들 ECM 신호 피크가 러시아 캄차카반도의 Kliuchevskoi 화산 분출과 연관된 것을 보여준다. 이러한 결과는 극지연구소에서 자체 제작한 ECM 측정 시스템으로 분석한 ECM 자료의 신뢰성이 높다는 것을 나타낸다. 마지막으로 참바가라브 빙하코어의 상부 5 m에서 분석한 물 안정동위원소비의 변화는 뚜렷한 계절 주기성을 보이고 있고, 이 결과는 참바가라브 빙하코어의 화학적 프록시 기록이 후퇴적과정에 의해 크게 교란되지 않았다는 것을 지시한다. 본 연구에서 확립한 빙하시료 전처리 방법 설정과 기초 프록시 분석 기술은 앞으로 우리나라가 독자적으로 남북극 및 고산지역에서 시추하는 빙하코어에 적용하여 다양한 고기후 및 고환경 연구에 활용될 것이다.

Keywords

References

  1. 극지연구소 (2010a) 고산빙하, 육상퇴적물 및 기후모델을 이용한 아시아 고기후 복원. 기상청, RACS 2010-3007, 182 p (KOPRI (2010a) Paleoclimate Reconstruction of Asia using Alpine Ice Core, Land Sediment and Climate Model. Korea Polar Research Institute, RACS 2010-3007, 182 p (in Korean))
  2. 극지연구소 (2010b) 빙하코어시료의 용융장치 개발을 통한 극미량 proxies 측정 기법 연구. 한국해양과학기술원 부설 극지연구소, PK09050, 32 p (KOPRI (2010b) Development of Advanced Meltering System for Measurement of Traceable Proxies in Ice Core. Korea Polar Research Institute, PK09050, 32 p (in Korean))
  3. 극지연구소 (2011) 극한지 빙하시추와 Ice Core Bank 운영을 위한 핵심 기술 개발. 한국해양과학기술원 부설 극지연구소, BSPP10010-174-7, 733 p (KOPRI (2011) Development of Core Technology for Ice Core Drilling and Ice Core Bank. Korea Polar Research Institute, BSPP10010-174-7, 733 p (in Korean))
  4. Aizen VB, Aizen EM, Fujita K, Nikitin SA, Kreutz KJ, Takeuchi LN (2005) Stable-isotope time series and precipitation origin from firn-core and snow samples, Altai glaciers, Siberia. J Glaciol 51:637-654 https://doi.org/10.3189/172756505781829034
  5. Alley RB, Shuman CA, Meese DA, Gow AJ, Taylor KC, Cuffey KM, Fitzpatrick JJ, Grootes PM, Zielinski GA, Ram M, Spinelli G, Elder B (1997) Visual-stratigraphic dating of the GISP2 ice core: Basic, reproducibility, and application. J Geophys Res 102:26367-26381 https://doi.org/10.1029/96JC03837
  6. Anders S, Soren WN, Sepp K, Sigfus JJ, Jorgen PS, Matthias B, Urs R, Regine R (2005) Visual stratigraphy of the North Greenland Ice Core Project (NorthGRIP) ice core during the last glacial period. J Geophys Res 110:D02108. doi:10.1029/2004JD005134
  7. Boutron CF (1995) Historical reconstruction of the earth's past atmospheric environment from Greenland and Antarctic snow and ice cores. Environ Rev 3:1-28 https://doi.org/10.1139/a95-001
  8. Candelone JP, Hong S, Boutron CF (1994) An improved method for decontaminating polar snow or ice cores for heavy metal analysis. Anal Chim Acta 29:9-16
  9. Cole-Dai J, Budner DM, Ferris AG (2006) High speed, high resolution, and continuous chemical analysis of ice cores using a melter and ion chromatography. Environ Sci Technol 40:6764-6769 https://doi.org/10.1021/es061188a
  10. Dansgaard W (1964) Stable isotope in precipitation. Tellus 14:436-468
  11. Eichler A, Tinner W, Brutsch S, Olivier S, Papina T, Schwikowski M (2011) An ice-core based history of Siberian forest fires since AD 1250. Quat Sci Rev 30:1027-1034 https://doi.org/10.1016/j.quascirev.2011.02.007
  12. Enkhtaivan (2006) Physical-Geographical Characteristics of the Altai Region. In: Vogtmann H, Dobretsov N (eds) Environmental Security and Sustainable Land Use-with special reference to Central Asia, NATO Security through Science Series, pp 349-351
  13. Glen JW, Paren JG (1975) The electrical properties of snow and ice. J Glaciol 15:15-38 https://doi.org/10.1017/S0022143000034249
  14. Gupta P, Noone D, Galewsky J, Sweeney C, Vaughn BH (2009) Demonstration of high-precision continuous measurements of water vapor isotopologues in laboratory and remote field deployments using wavelength-scanned cavity ring-down spectroscopy (WS-CRDS) technology. Rapid Commun Mass Sp 23:2534-2542 https://doi.org/10.1002/rcm.4100
  15. Hammer CU (1980) Acidity of polar ice core in relation to absolute dating, past volcanism, and radio-echoes. J Glaciol 25:359-372 https://doi.org/10.1017/S0022143000015227
  16. Hammer CU, Clausen HB, Langway CC (2004) Electrical conductivity method (ECM) stratigraphic dating of the Byrd Station ice core, Antarctica. Ann Glaciol 20:115-120
  17. Hong S, Liuberas A, Rodriguez F (2000) A clean protocol for determining ultralow heavy metal concentrations: its application to the analysis of Pb, Cd, Cu, Zn and Mn in Antarctic snow. Korean J Pol Res 11:35-47
  18. Hong S, Kim Y, Boutron CF, Ferrari CP, Petit JR, Barbante C, Rosman K, Lipenkov VY (2003) Climate-related variations in lead concentrations and sources in Vostok Antarctic ice from 65,000 to 240,000 years BP. Geophys Res Lett 30:2138. doi:10.1029/2003GL018411
  19. Hong S, Boutron CF, Gabrielli P, Barbante C, Ferrari CP, Petit JR, Lee K, Lipenkov VY (2004) Past natural changes in Cu, Zn and Cd in Vostok Antarctic ice dated back to the penultimate interglacial period. Geophys Res Lett 31:L20111. doi:10.1029/2004GL021075
  20. Hong S, Lee K, Hou S, Hur SD, Ren J, Burn LJ, Rosman K, Barbante C, Boutron CF (2009) An 800-year record of atmospheric As, Mo, Sn, and Sb in central Asia in high-altitude ice cores from Mt. Qomolangma (Everest), Himalayas. Environ Sci Technol 43:8060-8065 https://doi.org/10.1021/es901685u
  21. Hong SB, Lee K, Hur SD, Hong S, Soyol-Erdene T-O, Kim SM, Jung JW (2014) Development of advanced melting system for measurement of trace elements and ions in ice core. J Glaciol (Submitted)
  22. Hur SD, Soyol-Erdene T-O, Hwang HJ, Han C, Gabrielli P, Barbante C, Boutron CF, Hong S (2013) Climate-related variations in atmospheric Sb and Tl in the EPICA Dome C ice (East Antarctica) during the past 800,000 years. Global Biogeochem Cy 27:930-940 https://doi.org/10.1002/gbc.20079
  23. Kadota T, Davaa G (2007) Recent glacier variations in Mongolia. Ann Glaciol 46:185-188 https://doi.org/10.3189/172756407782871675
  24. Kang S, Mayewski PA, Yan Y, Qin D, Yao T, Ren J (2003) Dust records from three ice cores: relationships to spring atmospheric circulation over the Northern Hemisphere. Atmos Environ 37:4823-4835 https://doi.org/10.1016/j.atmosenv.2003.08.010
  25. Kellerhals T, Tobler L, Brutsch S, Sigl M, Wacker L, Gaggeler HW, Schwikowski M (2010) Thallium as a tracer for preindustrial volcanic eruptions in an ice core record from Illimani, Bolivia. Environ Sci Technol 44:888-893 https://doi.org/10.1021/es902492n
  26. Kinnard C, Koerner RM, Zdanowicz CM, Fisher DA, Zheng J, Sharp MJ, Nicholson L, Lauriol B (2008) Stratigraphic analysis of an ice core from the Prince of Wales Icefield, Ellesmere Island, Arctic Canada, using digital image analysis: High-resolution density, past summer warmth reconstruction, and melt effect on ice core solid conductivity. J Geophys Res 113:D24120. doi:10.1029/2008JD011083
  27. Koerner RM (1997), Some comment on climatic reconstructions from ice cores drilled in areas of high melt. J Glaciol 43:90-97 https://doi.org/10.1017/S0022143000002847
  28. Kreutz KJ, Aizen VB, Cecil LD, Wake CP (2001) Oxygen isotopic and soluble ionic composition of a shallow firn core, Inilchek glacier, central Tien Shan. J Glaciol 47:548-554 https://doi.org/10.3189/172756501781831819
  29. Lee K, Hur SD, Hou S, Hong S, Qin X, Ren J, Liu Y, Rosman K, Barbante C, Boutron CF (2008) Atmospheric pollution for trace elements in the remote high-altitude atmosphere in central Asia as recorded in snow from Mt. Qomolangma (Everest) of the Himalayas. Sci Total Environ 404:171-181 https://doi.org/10.1016/j.scitotenv.2008.06.022
  30. Lee K, Hur SD, Hou S, Burn-Nunes LJ, Hong S, Barbante C, Boutron CF, Rosman K (2011) Isotopic signatures for natural versus anthropogenic Pb in high-altitude Mt. Everest ice cores during the past 800 years. Sci Total Environ 412-413:194-202 https://doi.org/10.1016/j.scitotenv.2011.10.002
  31. Legrand M, Mayewski P (1997) Glaciochemistry of polar ice cores: A review. Rev Geophys 35:219-243 https://doi.org/10.1029/96RG03527
  32. McConnell JR, Lamorey GW, Lambert SW, Taylor KC (2002) Continuous ice-core analyses using inductively coupled plasma mass spectrometry. Environ Sci Technol 36:7-11 https://doi.org/10.1021/es011088z
  33. Moore JC, Mulvaney R, Paren JG (1989) Dielectric stratigraphy of ice: A new technique for determining total ionic concentrations in polar ice cores. Geophys Res Lett 16:1177-1180 https://doi.org/10.1029/GL016i010p01177
  34. Olivier S, Blaser C, Brutsch S, Frolova N, Gaggeler HW, Henderson KA, Palmer AS, Papina T, Schwikowski M (2006) Temporal variations of mineral dust, biogenic tracers, and anthropogenic species during the past two centuries from Belukha ice core, Siberian Altai. J Geophys Res 111:D05309. doi:10.1029/2005JD005830
  35. Osterberg EC, Handley MJ, Sneed SB, Mayewski PA, Kreutz KJ (2006) Continuous ice core melter system with discrete sampling for major ion, trace element, and stable isotope analyses. Environ Sci Technol 40:3355-3361 https://doi.org/10.1021/es052536w
  36. Schotterer U, Frohlich K, Gaggeler HW, Sandjordj S, Stichler W (1997) Isotope records from Mongolian and alpine ice cores as climate indicators. Climatic Change 36:519-530 https://doi.org/10.1023/A:1005338427567
  37. Schotterer U, Stichler W, Ginot P (2004) The influence of postdepositional effects on ice core studies: examples from the Alps, Andes, and Altai. In: Cecil LD, Green JR, Thompson LG (eds) Earth Paleoenvironments: Records Preserved in Mid-and Low-Latitude Glaciers, Developments in Paleoenvironmental Research, Volume 9, Kluwer Academic Publishers, pp 39-60
  38. Shuji F, Nobuhiko A, Yoshiyuki F, Takao K, Kokichi K, Hideaki M, Hideki N, Hitoshi S, Okitsugu W (2002) Ice core processing at Dome Fuji Station, Antractica. Mem Natl Inst Polar Res 56:275-286
  39. Stauffer B, Burkhalter J, Sigg A (1988) New Methods in Ice Core Processing. In: Proceeding of the Third International Workshop on Ice Drilling Technology, US Ice Drilling Program, pp 151-157
  40. Tian L, Yao T, Li Z, MacClune K, Wu G, Xu B, Shen Y (2006) Recent rapid warming trend revealed from the isotopic record in Muztagata ice core, eastern Pamirs. J Geophys Res 111:D13103. doi:10.1029/2005JD006249
  41. Thompson LG, Mosley-Thompson E, Davis M, Lin PN, Yao T, Dyurgerov M, Dai J (1993) "Recent warming": ice core evidence from tropical ice cores with emphasis on Central Asia. Global Planet Change 7:145-156 https://doi.org/10.1016/0921-8181(93)90046-Q
  42. Wake CP, Mayewski PA, Zichu X, Ping X, Zhonggin L (1993) Regional distribution of monsoon and desert dust signals recorded in Asian glaciers. Geophys Res Lett 20:1411-1414 https://doi.org/10.1029/93GL01682