• Title/Summary/Keyword: ITRF

Search Result 34, Processing Time 0.033 seconds

A Experimental Study on the Repeatability of Network RTK-GPS with Spider Net Type (Spider Net 방식 Network RTK-GPS측량의 반복재현성에 대한 실험연구)

  • Kim, Sun-Chul;Kang, Sang-Gu;Lee, Jin-Duk
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.37-42
    • /
    • 2007
  • A network of MAC type was constructed in the Gyeonggi-do area to analyze the usefulness and validity of the Network RTK-GPS. Six sites were selected to conduct GPS observation for 24 hours, and by determining the ITRF of each site, coordinates were determined in connection with IGS network. Then check points which were established in Gimpo area were observed at least 7 times by Network RTK at 20 secs of retrieval intervals. The result showed high accuracy in the difference between the coordinates determined immediately by the in-field network survey and the current performance was 1-2cm. Its biggest benefit is the expanded range of survey and efficiency of practice. In summary, it is proved that a network survey has the accuracy, scalability and efficiency and it is expected that the network survey will contribute to the cadastral survey.

  • PDF

Study on Coordinate Transformation of Railroad Central Linear-line Using the Railroad Reference Points (철도기준점을 이용한 철도중심선형 좌표변환에 관한 연구)

  • Moon, Cheung-Kyun;Heo, Joon;Kang, Sang-Gu;Kim, Il-Joo;Park, Jae-Hong;Kim, Sung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.685-691
    • /
    • 2007
  • In this paper through Honan high-speed railroad which is planned with the north and south axis, we will verify the feasibility of the coordinate conversion using railroad control points after regarding current planned-railroad as the linear central axises. From analysis, distortion of Y axis varies 21 cm to 40 cm diminishing to a gentle straight line, distortion of X axis varies 14 cm to 29 cm. Through a revision, the deviation value between the coordinates were 6 mm to 9 mm and it satisfied the allowable error of national geographic information institute which is following ITRF (International Terrestrial Reference Frame) and cadastral boundary survey (10 cm). consequently the coordinate conversion is possible using railroad control points as common control points.

Improvement of Public Announcement of Topographical Drawing for Linear-Type Infrastructure (선형형태 사회기반시설물의 지형도면 고시 개선방안)

  • Moon, Jung Kyun;Kwon, Hun Yeong;Cho, Hyoung Sig;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1327-1334
    • /
    • 2014
  • Linear form of public works such as roads, railways and rivers, generally used as long work crossing administrative districts, can be several hundreds km length and narrow. These linear forms use SCM sheets, which do not include the quadrangle shape, to make a public announcement of topographical drawing in order to get the work approval. the Integrated measurement channel investigation and cadastral act that are established in 2009 apply the ITRF for the composition of design and construction books and coordinates of topographical map in order to get the work approval. However according to the article 5 of additional clause, while the cadastre is maintaining local coordinates, if there is a technical error in the content of the Public Announcement of Topographical Drawing that used the SCM, the question of responsibility of land borders and the efficacy or not of the announcement is raised as an administrative measure. After analysing the causes and enforcing coordinate conversion and correction taking into account linear form work's features, the result was reflected in the existing SCM. As a conclusion, the present study proposes the improvement of the procedures of the Public Announcement of Topographical Drawing.

한국 측지VLBI의 현황과 전망

  • Kim, Du-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.51.3-51.3
    • /
    • 2015
  • 1995년 한국 최초로 VLBI관측이 이루어졌다. 일본 측의 26m 안테나(일본 국토연구원 소재)와 한국 측의 3.6m 안테나(국토지리정보원 소재)로 수행되었으며, 이 때 결정된 관측점의 좌표가 세계 공통으로 사용되는 "세계측지계(ITRF)"에 의거한 새로운 국가기준좌표계의 경위도 원점이다. 그 후 측지VLBI관측국의 설치를 위해, "측지VLBI구축 타당성조사 및 기본계획 수립을 위한 연구(2003년)"와 "측지VLBI구축 실시설계(2006년)"를 수행하였다. 그 결과 국가 차원에서 측지VLBI관측소(22m 안테나)를 건설하기 위해 2008년에 관측소 후보지를 세종시로 확정해서 공사에 들어갔다. 2012년에 준공되었으며, 명칭을 "우주측지관측센터"로 하였다. 그 후 1년 동안의 시험관측의 성공으로 아시아에서 3번째로 정식으로 IVS(International VLBI Service)에 가입하였다. 현재 독일, 일본, 미국 등의 측지VLBI관측국들과 정기적으로 관측을 수행하게 되었으며, 실적을 올리고 있다. IVS사업 뿐 만 아니라, 한국천문연구원의 KVN(천문 VLBI)연구팀과도 공동연구를 수행해서 우리나라의 천문 VLBI 및 측지VLBI관측사업의 활성화에 기여하고 있다. 장차 동남아 각국에 마이크로SAR위성의 관측데이터를 수신하기 위한 지상국(3m급 소형안테나)이 설치되면, 이를 활용해서 측지VLBI관측을 수행할 계획을 수립하고 있다. 이것은 위성용 수신기를 VLBI용 수신기로 교체하면 된다. 한국과 일본이 VLBI관측을 수행했던 것처럼 세종시에 설치된 우주측지관측소가 허브역할을 하면 된다. 즉 동남아 지역에 우주 VLBI관측망을 구축하게 된다.

  • PDF

Realization of New Korean Horizontal Geodetic Datum: GPS Observation and Network Adjustment

  • Lee, Young-Jin;Lee, Hung-Kyu;Jung, Gwang-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.529-534
    • /
    • 2006
  • New geocentric geodetic datum has recently been realized in Korea, Korean Geodetic Datum 2002- KGD2002, to overcome problems due to the existing Tokyo datum, which had been used in this country since early 20th century. This transition will support modern surveying techniques, such as Global Navigation Satellite Systems (GNSS) and ensures that spatial data is compatible with other international systems. For this realization, very long baseline interferometry (VLBI) observations were initially carried out in 1995 to determine the coordinates of the origin of KGD2002 based on the International Terrestrial Reference Frame (ITRF). Continuous GPS observations were collected from 14 reference stations across Korea to compute the coordinates of 1st order horizontal geodetic control points. During the campaign, GPS observations were also collected at about 9,000 existing geodetic control points. In 2006, network adjustment with all data obtained using GPS and EDM since 1975 has been performed under the condition of fixing the coordinates of GPS continuous observation stations to compute coordinate measurements of the 2nd and 3rd geodetic control points. This paper describes the GPS campaigns which have been undertaken since 1996 and details of the network adjustment schemes. This is followed

  • PDF

Analysis Change of Parcel Boundaries and Area by Transformation World Geodetic System (세계측지계 전환에 따른 지적 필지별 면적 변화 분석)

  • Kwak, Ho-Sun;Choi, Yun-Soo;Kwon, Jay-Hyoun;Lee, Won-Jin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.350-351
    • /
    • 2008
  • 현재 우리나라의 측량체계는 크게 측지분야와 지적분야로 이원화되어 있으며 측지분야에서는 2001년도에 측량법을 개정하여 ITRF2000좌표계와 GRS80 타원체를 측량기준으로 사용하는 세계측지계를 도입하였다. 하지만 지적 분야에서는 국민의 재산권과 직접적으로 관련이 있는 필지의 경계와 면적의 변화 연구는 미미한 상태이다. 따라서 본 연구는 2010년 세계측지계 도입 후 지적분야에서 발생할 수 있는 필지별 면적 변동에 따른 사회적 혼란 여부를 판단하기 위하여 서울특별시 종로구 숭인등 숭인4구역주택재개발지구를 연구 대상지로 선정하여 세계측지계 전환에 지적 필지별 면적 변화를 분석하였다. 분석결과 연구대상지는 세계측지계와 지역측지계가 종선(X)축으로 305.87m. 종선(Y)축으로 70.87m 편차로 두 좌표계 간 북동방향으로 313.97m의 차이가 있고, 현행성과와 비교한 결과 종선(X) 방향으로는 평균 +4.0cm, 횡선(Y) 방향으로는 평균 -3.0cm의 차이가 나타났으며, 필지별 면적의 변동량은 $1.0m^2{\sim}3.0m^2$ 차이가 있지만 허용오차 범위 내에 있으므로 세계측지계 전환에는 문제점이 없는 것으로 판단된다. 하지만 본 연구의 결과는 그 대상범위가 한정되어 있고 기 검증된 지적기준점 성과를 사용한 결과이므로, 향후 보다 효율적인 세계측지계 전환과 도입을 위해서는 현 지적기준점체계의 정확한 세계좌표계 변환 성과를 기준으로 한 대단위의 필지별 면적 변동량 및 허용범위 분석과 같은 추가적인 연구가 조속히 이루어져야 할 것으로 판단된다.

  • PDF

DETERMINATION OF THE INVARIANT POINT OF THE KOREAN VLBI NETWORK RADIO TELESCOPES: FIRST RESULTS AT THE ULSAN AND TAMNA OBSERVATORIES

  • Yoo, Sung-Moon;Jung, Taehyun;Lee, Sung-Mo;Yoon, Ha Su;Park, Han-Earl;Chung, Jong-Kyun;Roh, Kyoung-Min;Wi, Seog Oh;Cho, Jungho;Byun, Do-Young
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.5
    • /
    • pp.143-153
    • /
    • 2018
  • We present the first results of the invariant point (IVP) coordinates of the KVN Ulsan and Tamna radio telescopes. To determine the IVP coordinates in the geocentric frame (ITRF2014), a coordinate transformation method from the local frame, in which it is possible to survey using the optical instrument, to the geocentric frame was adopted. The least-square circles are fitted in three dimensions using the Gauss-Newton method to determine the azimuth and elevation axes in the local frame. The IVP in the local frame is defined as the mean value of the intersection points of the azimuth axis and the orthogonal vector between the azimuth and elevation axes. The geocentric coordinates of the IVP are determined by obtaining the seven transformation parameters between the local frame and the east-north-up (ENU) geodetic frame. The axis-offset between the azimuth and elevation axes is also estimated. To validate the results, the variation of coordinates of the GNSS station installed at KVN Ulsan was compared to the movement of the IVP coordinates over 9 months, showing good agreement in both magnitude and direction. This result will provide an important basis for geodetic and astrometric applications.

Lithospheric Plate Motion Model: Development and Current Status (지각판 운동 모델의 변천과 현황)

  • Sung-Ho Na;Jungho Cho
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.661-679
    • /
    • 2022
  • Plate tectonics, with the continental drift theory and later strongly supported by the sea-floor spreading theory with evidence of paleo-geomagnetic fields, ocean floor sediments, successfully explained the slow but continuous movements of rigid lithospheres in geological time. Initially, plate motions were described as relative movements between adjacent plates, mainly based on paleo-geomagnetic reversal data. The advent of space geodetic techniques in the 1980s enabled direct measurements of plate velocities and assessment of deformations within certain regions. In this review, early relative plate motion models are briefly summarized, the no-net-rotation frame theory and corresponding models are explained, and the characteristics of the most recent models that incorporate intraplate deformation are described. Additionally, the plate motion section of the International Terrestrial Reference Frame is introduced, and a few recent case studies of local plate motion are briefly described; for example, in South America, Europe, Antarctica, and Turkey. Finally, studies of plate motion in northeastern Asia focusing on the Korean Peninsula are introduced.

Crustal Deformation Velocities Estimated from GPS and Comparison of Plate Motion Models (GPS로 추정한 지각변동 속도 및 판 거동 모델과의 비교)

  • Song, Dong Seob;Yun, Hong Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.877-884
    • /
    • 2006
  • GPS is an essential tool for applications that be required high positioning precision, for the velocity field estimation of tectonic plates. The three years data of eight GPS permanent station were analyzed to estimate crustal deformation velocities using Gipsy-oasis II software. The velocity vectors of GPS stations are estimated by linear regression method in daily solution time series. The velocities have a standard deviation of less than 0.1mm/yr and the magnitude of velocities given by the Korean GPS permanent stations were very small, ranging from 25.1 to 31.1 mm/yr. The comparison between the final solution and other sources, such as IGS velocity result calculated from SOPAC was accomplished and the results generally show good agreement for magnitude and direction in crustal motion. To evaluate the accuracy of our results, the velocities obtained from six plate motion model was compared with the final solution based on GPS observation.

Development of Coordinate Transformation Tool for Existing Digital Map (수치지도 좌표계 변환 도구 개발)

  • 윤홍식;조재명;송동섭;김명호;조흥묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • This study describes the development of coordinate transformation tool for transforming the digital map using newly derived transformation parameters which are determined from the data referred to the local geodetic datum and the geocentric datum (ITRF2000) and the distortion modelling derived from collocation method. We prepared 190 common points and used 107 points to calculate 7 transformation parameters. In order to evaluate an accuracy of coordinate transformation, 83 common points were tested. In this study, we used Molodensky-Badekas model to derive the 7 transformation Parameters. An accuracy of 0.22m was obtained applying 7 Parameters transformation and the distortion modelling together. It shows that the accuracy of coordinate transformation is improved 72% against the result of 7 parameters transformation only. We developed the transformation tool, GDKtrans, which can be transformed the digital map of scales 1/50,000, 1/25,000 and 1/5,000. We also analyzed the digital map of l/5,000 at six urban areas by GPS observations. The result shows less RMSE of about 1.9 m and large disagreement at position and features. Consequently, we suggests that l/5,000 digital map is necessary of whole revision.