• Title/Summary/Keyword: ITO-coated glass

Search Result 130, Processing Time 0.031 seconds

Studies on the properties of electrochromic films and the effect of migration barrier (Electrochromic 막의 특성과 물질이동 방지막의 효과에 대한 연구)

  • 황하룡;백지흠;허증수;이덕동;임정옥;장동식
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • After manufacturing the electrochromic device (structure: ITO glass/$WO_3$/electrolyte/$V_2O_5$/ITO;glass) by using of sol-gel process and evaporation, optical properties and migration effect were investigated. The result shows that electrochromic device with heat treated (at water vapor ambient, $500^{\circ}C$, 1 hour) sol-gel coated $WO_3$ and $V_2O_5$ films had the highest transmittance variance. Electrochromic devices are based on the reversible insertion of guest atoms into structure of the host solid. But after cyclic operation, we find that the tungsten in $WO_3$ film and the indium in ITO film were migrated with each other. For the purpose of blocking migration, tungsten barrier film is inserted between ITO and $WO_3$ film. The result of cyclic voltamogram and the Auger depth profile show that the peak separation of cyclic voltamogram is reduced to below 1/10 and we could effectively block the indium and tungsten migration that is caused by flow of Li ions.

  • PDF

The characteristics of $(Ba_{0.5},Sr_{0.5})TiO_3$ thin films deposited on ITO glass for TFELD insulating layer (TFELD 절연층을 위해 ITO glass위에 증착시킨 $(Ba_{0.5},Sr_{0.5})TiO_3$ 박막의 특성)

  • Kim, Jeong-Hwan;Bae, Seung-Choon;Park, Sung-Kun;Kwon, Sung-Ryul;Choi, Byung-Jin;Nam, Gi-Hong;Kim, Ki-Wan
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2000
  • BST thin films were deposited on the ITO coated glass for using TFELD insulating layer by rf magnetron sputtering method. $O_2/(Ar+O_2)$ mixing ratio was 10%, substrate temperature was changed from R.T. to $500^{\circ}C$, and working pressure was changed from 5 mTorr to 30 mTorr. BST thin films deposited with various conditions were investigated electrical, optical, structural properties, and stoichiometry. The result of investigation was achieved good fabrication condition that substrate temperature of $400^{\circ}C$, and working pressure of 30 mTorr. Relative dielectric constant of 254 at 1 kHz, leakage current density was below $3.3{\times}10^{-7\;}A/cm^2$ at 5\;MV/cm applied electric field, and transmittance was over 82% at visible range.

  • PDF

Growth of Electrochemical Nickel Thin Film on ITO(Indium Tin Oxide) Electrode (ITO(Indium Tin Oxide) 전극상의 전기화학적 Nickel 박막형성)

  • Kim, Woo-Seong;Seong, Jeong-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.155-161
    • /
    • 2002
  • We studied the formation of nickel nano thin film that have various electrochromic properties. Nickel thin film having various thickness will apply photoelectronic devices, specially, electrochromic devices. These devices will apply lens, battery, glass and solar cell that have light, thin, simple and small that applied nanotechnology and quantum dot. Nickel thin film was coated by electrochemical method on ITO electrode. We studied the thin film properties by Cyclic voltammetry, Chronoamperometry. Impedance. X-ray diffraction analysis and Atomic force microscopy.

  • PDF

Luminous Characteristics of Transparent Field Emitters Produced by Using Ultra-thin Films of Single Walled Carbon Nanotubes

  • Jang, Eun-Soo;Goak, Jeung-Choon;Lee, Han-Sung;Lee, Seung-Ho;Lee, Nae-Sung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.31.1-31.1
    • /
    • 2009
  • Carbon nanotubes (CNTs) are attractive material because of their superior electrical, mechanical, and chemical properties. Furthermore, their geometric features such as a large aspect ratio and a small radius of curvature at tip make them ideal for low-voltage field emission devices including backlight units of liquid crystal display, lighting lamps, X-ray source, microwave amplifiers, electron microscopes, etc. In field emission devices for display applications, the phosphor anode is positioned against the CNT emitters. In most case, light generated from the phosphor by electron bombardment passes through the anode front plate to reach observers. However, light is produced in a narrow depth of the surface of the phosphor layer because phosphor particles are big as much as several micrometers, which means that it is necessary to transmit through the phosphor layer. Hence, a drop of light intensity is unavoidable during this process. In this study, we fabricated a transparent cathode back plate by depositing an ultra-thin film of single walled CNTs (SWCNTs) on an indium tin oxide (ITO)-coated glass substrate. Two types of phosphor anode plates were employed to our transparent cathode back plate: One is an ITO glass substrate with a phosphor layer and the other is a Cr-coated glass substrate with phosphor layer. For the former case, light was radiated from both the front and the back sides, where luminance on the back was ~30% higher than that on the front in our experiments. For the other case, however, light was emitted only from the cathode back side as the Cr layer on the anode glass rolled as a reflecting mirror, improving the light luminance as much as ~60% compared with that on the front of one. This study seems to be discussed about the morphologies and field emission characteristics of CNT emitters according to the experimental parameters in fabricating the lamps emitting light on the both sides or only on the cathode back side. The experimental procedures are as follows. First, a CNT aqueous solution was prepared by ultrasonically dispersing purified SWCNTs in deionized water with sodium dodecyl sulfate (SDS). A milliliter or even several tens of micro-liters of CNT solution was deposited onto a porous alumina membrane through vacuum filtration. Thereafter, the alumina membrane was solvated with the 3 M NaOH solution and the floating CNT film was easily transferred to an ITO glass substrate. It is required for CNT film to make standing CNTs up to serve as electron emitter through an adhesive roller activation.

  • PDF

Disposable Microchip-Based Electrochemical Detector Using Polydimethylsiloxane Channel and Indium Tin Oxide Electrode (Polydimethylsiloxane 채널과 indium tin oxide 전극을 이용한 일회용 전기화학적 검출 시스템)

  • Yi In-Je;Kang Chi-Jung;Kim Yong-Sang;Kim Ju-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.5
    • /
    • pp.227-231
    • /
    • 2005
  • We have developed a microsystem with a capillary electrophoresis (CE) and an electrochemical detector (ECD). The microfabricated CE-ECD systems are adequate for a disposable type and the characteristics are optimized for an application to the electrochemical detection. The system was realized with polydimethylsiloxane (PDMS)-glass chip and indium tin oxide electrode. The injection and separation channels (80 um wide$\ast$40 um deep) were produced by moulding a PDMS against a microfabricated master with relatively simple and inexpensive methods. A CE-ECD systems were fabricated on the same substrate with the same fabrication procedure. The surface of PDMS layer and ITO-coated glass layer was treated with UV-Ozone to improve bonding strength and to enhance the effect of electroosmotic flow. For comparing the performance of the ITO electrodes with the gold electrodes, gold electrode microchip was fabricated with the same dimension. The running buffer was prepared by 10 mM 2-(N-morpholino)ethanesulfonic acid (MES) titrated to PH 6.5 using 0.1 N NaOH. We measured olectropherograms for the testing analytes consisted of catechol and dopamine with the different concentrations of 1 mM and 0.1 mM, respectively. The measured current peaks of dopamine and catechol are proportional to their concentrations. For comparing the performance of the ITO electrodes with the gold electrodes, electropherograms was measured for CE-ECD device with gold electrodes under the same conditions. Except for the base current level, the performances including sensitivity, stability, and resolution of CE-ECD microchip with ITO electrode are almost the same compared with gold electrode CE-ECD device. The disposable CE/ECD system showed similar results with the previously reported expensive system in the limit of detection and peak skew. When we are using disposable microchips, it is possible to avoid polishing electrode and reconditioning.

Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode (전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용)

  • Wang, Xue;Shi, Ke;Kim, Chang-Joon
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.62-69
    • /
    • 2022
  • Graphene has a large surface area to volume ratio and good mechanical and electrical property and biocompatibility. This study described the electrochemical deposition and reduction of graphene oxide on the surface of indium tin oxide (ITO) glass slide and electrochemical characterization of graphen-modified ITO. Cyclic voltammetry was used for the deposition and reduction of graphene oxide. The surface of graphen-coated ITO was characterized using scanning electron microscopy and energy dispesive X-ray spectroscopy. The electrodes were evaluated by performing cyclic voltammetry and electrochemical impedance spectroscopy. The number of cycles and scan rate greatly influenced on the coverage and the degree of reduction of graphene oxide, thus affecting the electrochemical properties of electrodes. Modification of ITO with graphene generated higher current with lower charge transfer resistance at the electrode-electrolyte interface. Glucose oxidase was immobilized on the graphene-modified ITO and has been found to successfully generate electrons by oxidizing glucose.

Characterization of Selectively Absorbing Properties of Indium Tin Oxide Thin Films by UV-VIS-IR Spectroscopy (UV-VIS-IR 분광법에 의한 산화 인듐 주석 박막의 선택적 투과 흡수 특성 관찰)

  • Lee, Jeon-Kook;Lee, Dong-Heon;Cho, Nam-Hee
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.135-142
    • /
    • 1992
  • Indium tin oxide(ITO) films coated on the window glass selectively transmit the solar energy and infrared. We call this system passive solar collectors. Selectively absorbing properties of sol gel dip coated ITO films were characterized by UV-VIS-NIR spectroscopy. The effects of heat treating temperature, time, atmosphere, substrate and barrier layers are concerned. Indium tin oxide films heat-treated at $500^{\circ}C$ in a reducing atmosphere show intrinsic properties. Efficiency of solar energy transmittance was enhanced by coating of $SiO_2-ZrO_2$ as an alkali ion barrier layer. Energy was saved by the double layers of $SiO_2-ZrO_2$ and ITO since solar energy is transmitted and heat generated inside(${\lambda}$ > 2700nm) is reflected.

  • PDF

Properties of Sol-gel $WO_3$ thin films (졸겔 $WO_3$박막의 특성)

  • 이길동
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.61-66
    • /
    • 2001
  • $WO_3$ films were multicoated on the microscope slide glass and ITO-coated glass using a tungsten alkoxide type solution by the sol-gel deposition process. The effect of dipping and processing parameters on the structure, optical and electrochemical properties of the film were also investigated. Coating using alkoxide solution was very uniformed for low dipping speed of 0.005 m/s, but thickness variations across the sample became apparent for dipping speeds greater than 0.007 m/s. Electrochemical coloration experiments showed that films fired at lower temperatures color more easily than film fired to > $200^{\circ}C$. Rutherford backscattering spectroscopy studies revealed that $K^+$ ions were uniformly distributed throughout the $WO_3$layer in the colored sample.

  • PDF

Chemical Stability of The Electrochromic Tungsten oxide Thin Films (전기적 착색 텅스텐 산화물 박막의 화학적 안정성)

  • Lee, G.D.
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.87-96
    • /
    • 1996
  • Electochromic tungsten oxide thin films were prepared on the ITO coated glass by rf magnetron sputtering from a compressed powder tungsten oxide target in an argonoxygen atmosphere. The influence of the preparation conditions, especially the substrate temperature, on the chemical stability of film was investigated. These films were cycled in 0.6M $LiClO_4$ and 0.6M $H_2SO_4$ electrolyte respecitively, and exhibited electrochromic behavior upon the electrochemical insertion and extraction of ion. Among these tungsten oxide thin films, films prepared at a substrate temperature of $150^{\circ}C$ were found to be most stable in terms of cyclic durability.

  • PDF

Electrodeposition of Polypyrrole Nanowires within Vertically Oriented Mesoporous Silica Template

  • Kang, Ho-Suk;Lee, Ho-Chun;Kwak, Ju-Hyoun
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.1
    • /
    • pp.22-26
    • /
    • 2011
  • Polypyrrole (Ppy) nanowire has been electrochemically synthesized via vertically oriented mesoporous silica template. The mesoporous template is also electrochemically deposited on indium tin oxide coated (ITO) glass from tetraethyl orthosilicate (TEOS) and cetyltrimethylammonium bromide (CTAB) surfactant. The highly ordered silica template is demonstrated to be 100~120nm thick with the pores of 4~5 nm diameter by scanning electron microscope (SEM) and transmission electron microscope (TEM). Ppy is formed to fill pores of the silica template from pyrrole solution by electrochemical oxidation. The Ppy in Ppy/silica/ITO composite was found to exhibit reversible electrochemical activity, as characterized by cyclic voltammetry (CV).