• Title/Summary/Keyword: ITO substrate

Search Result 548, Processing Time 0.035 seconds

Characteristic of ITO thin film with plasma surface treatment (플라즈마 표면 처리에 의한 ITO 박막 제작 특성)

  • Kim, Sang-Mo;Son, In-Hwan;Park, Sang-Joon;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.404-405
    • /
    • 2007
  • Tin-doped indium thin film is outstanding material among transparent Conductive Oxide (TCO) materials. ITO thin films show a low electrical resistance(<$10^{-4}\;[{\Omega}{\cdot}m]$) and high transmittance(>80%) in the visible range. ITO thin films usually have been deposited on the glass substrate. In order to apply flexible display, the substrate should have the ability to bend and be deposited without substrate heat. Also properties of ITO thin film depend on what kind of substrate. In this study, we prepared ITO thin film on the polycarbonate (PC) substrate by using Facing Target Sputtering (FTS) system. Before deposition of ITO thin film, PC substrate took plasma surface treatment. The electrical and surface properties of as-deposited thin films were investigated by Hall Effect measurement, UV/VIS spectrometer and the surface property of substrate is investigated by Contact angle measurement.

  • PDF

Effect of Substrate Preheating on the Characteristics of Flexible and Transparent ITO Electrodes Grown by Roll-to-Roll Sputtering for Touch Panel Applications (기판 열처리가 롤투롤 스퍼터를 이용하여 성장시킨 터치 패널용 유연 ITO 투명 전극의 특성에 미치는 효과 연구)

  • Kim, Dong-Ju;Lee, Won-Young;Kim, Bong-Seok;Kim, Han-Ki
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.327-332
    • /
    • 2010
  • We report on the effect of PET substrate preheating on the characteristics of the flexible and transparent indium tin oxide (ITO) electrode grown by a specially designed roll-to-roll sputtering system for touch panel applications. It was found that electrical and optical properties of the roll-to-roll sputter grown ITO film were critically dependent on the preheating of the PET substrate. In addition, the roll-to-roll sputter-grown ITO film after post annealing test at $140^{\circ}C$ for 90 min showed stable electrical and optical properties. The low sheet resistance and high optical transmittance of the ITO film grown on the preheated PET substrate demonstrate that the preheating process before ITO sputtering is one of the effective way to improve the characteristics of ITO/PET film. Furthermore, the superior flexibility of the ITO electrode grown on the preheated PET substrate indicates that the preheating treatment is a promising technique to obtain robust ITO/PET sample for touch panel applications.

Relationship between Working Parameter and Surface Nniformity of ITO coated Glass Substrate using Regression Analysis (회귀분석을 이용한 ITO 코팅유리기판의 표면균일도와 운전변수의 상관관계 분석)

  • 김면희;이상룡;이태영;배준영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1353-1356
    • /
    • 2004
  • In recent year, OLED(organic light emitted display) is used as the next generation device of FPD. OLED have been replacing the flat panel display device such as LCD, STN-LCD and TFT because this device is more efficient, economic and simple than those FPD devices, and this need not backlight system for visualization. The performance and efficiency of OLED is related with surface defect of ITO coated glass substrate. The typical surface defect of glass substrate is nonuniformity and bad surface roughness. ITO coated glass substrate is destroied for inspection about surface roughness and non-uniformity. Generally detection of the defects in the surface for ITO coated glass substrate is dependent on operator's experience. In this research, relationship between working parameter and surface non-uniformity is studied using regression analysis.

  • PDF

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

Electrical and Optical Properties of ITO Films Sputtered by RF -bias Voltage and In-Sn Alloy Target

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.153-157
    • /
    • 2004
  • ITO thin films were deposited on PET and soda-lime glass substrates by a dc reactive magnetron sputtering of In-Sn alloy metal target without substrate heater and post-deposition thermal treatment. The dependency of rf-bias voltage and substrate power during deposition processing was investigated to control the electrical and optical properties of ITO films. The range of rf bias voltage is from 0 to -80 V and the substrate power is applied from 10 to 50 W. The minimum resistivity of ITO film is 5.4${\times}$10$^{-4}$ $\Omega$cm at 50 W power and rf-bias voltage of -20 V. The best transmittance of ITO films at 550 nm wavelength is 91 % in the substrate power of 30 W and rf-bias voltage of -80 V.

Control of ITO/PET Thin Films Depending on the Ratio of Oxygen Partial Pressure in Sputter (스퍼터의 산소분압비율에 의존한 ITO/PET박막의 조절)

  • 김현후;신재혁;신성호;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.6
    • /
    • pp.671-676
    • /
    • 1999
  • ITO (indium tin oxide) thin films on PET (polyethylene terephthalate) substrate have been deposited by a dc reactive magnetron sputtering without heat treatments such as substrate heater and post heat treatment. Each sputtering parameter during the sputtering deposition is an important factor for the high quality of ITO thin films deposited on polymeric substrate. Particularly, the material, electrical and optical properties of as-deposited ITO oxide films are dominated by the ratio of oxygen partial pressure. As the experimental results, the excellent ITO films are prepared on PET substrate at the operating conditions as follows : operating pressure of 5 mTorr, target-substrate distance of 45mm, do power of 20~30W, and oxygen gas ratio of 10%. The optical transmittance is above 80% at 550 nm, and the sheet resistance and resistivity of films are 24 Ω/square and $1.5\times$10$^{-3}$ Ωcm, respectively.

  • PDF

Femtosecond laser pattering of ITO film on flexible substrate (펨토초 레이저를 이용한 플렉시블 ITO 패터닝 연구)

  • Sohn, Ik-Bu;Kim, Young-Seop;Noh, Young-Chul
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.11-15
    • /
    • 2010
  • Indium tin oxide (ITO) provides high electrical conductivity and transparency in the visible and near IR (infrared) wavelengths. Thus, it is widely used as a transparent electrode for the fabrication of liquid crystal displays (LCDs) and organic light emitting diode displays (OLRDs), photovoltaic devices, and other optical applications. Lasers have been used for removing coating on polymer substrate for flexible display and electronic industry. In selective removal of ITO layer, laser wavelength, pulse energy, scan speed, and the repetition rate of pulses determine conditions, which are efficient for removal of ITO coating without affecting properties of the polymer substrate. ITO coating removal with a laser is more environmentally friendly than other conventional etching methods. In this paper, pattering of ITO film from polymer substrates is described. The Yb:KGW femtosecond laser processing system with a pulse duration of 250fs, a wavelength of 1030nm and a repetition rate of 100kHz was used for removing ITO coating in air. We can remove the ITO coating using a scanner system with various pulse energies and scan speeds. We observed that the amount of debris is minimal through an optical and a confocal microscope, and femtosecond laser pulses with 1030nm wavelength are effective to remove ITO coating without the polymer substrate ablation.

  • PDF

Dependance of the Process Parameters on the Characteristic of the ITO Thin Films (ITO 박막의 공정변수에 따른 특성 연구)

  • 김소라;서정은;김상호
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.3
    • /
    • pp.158-163
    • /
    • 2004
  • ITO thin film was deposited on the glass by RF magnetron sputtering. Dependance of the process parameters such as thickness, target-to-substrate distance, substrate temperature and oxygen partial pressure on the transmittance and electrical resistance of ITO film were investigated. The deposition conditions for getting better optical and electrical ITO characteristics were the 1800-$2300\AA$ thickness, 65mm substrate-to-target distance, $350^{\circ}C$ substrate temperature and 8% oxygen partial pressure. At these conditions, the transmittance and sheet resistance of the ITO film were 83.3% and 77.86Ω/$\square$, respectively.

Inkjet patterning of Aqueous Silver Nano Sol on Interface-controlled ITO Glass

  • Ryu, Beyong-Hwan;Choi, Young-Min;Kong, Ki-Jeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1552-1555
    • /
    • 2005
  • We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared by variation of molecular weight and control of initial nucleation and growth of silver nanoparticles. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The fine line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF

Effect of Solar Cell Cover Glass on Solar Cell Performance (태양전지 보호유리가 태양전지 성능에 미치는 영향)

  • Choi, Young-Jin;Wang, Jin-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1421-1423
    • /
    • 1996
  • In this study, the effect of solar cell cover glass on the solar cell performance is evaluated. Silicon solar cell (active area:4*6cm, efficiency:12.6% at AMO condition) is used for this study. ITO(Indium tin Oxide) film thickness of the ITO/AR/substrate glass/solar cell structure samples are $40{\AA}$, $60{\AA}$, $160{\AA}$, $240{\AA}$ respectively. The solar cell maximum output power on the stacking structure variations showed 465mW in the AR/ITO/substrate glass/solar cell, and minimum output power showed 403mW in the AR/substrate glass/solar cell. The maximum output power of the solar cell on the ITO thickness variations of the ITO/AR/substrate glass/solar cell showed 460mW at $40{\AA}$ then decrease output power as ITO thickness increase. For environment tests, all samples are exposed UV light in the vacuum chanber. The output power degradation of AR(UVR)/substrate glass/solar cell stacking structure is small compared with ITO/AR(UVR)/substrate glass/solar cell stacking structure.

  • PDF