• Title/Summary/Keyword: ITO layer

Search Result 787, Processing Time 0.028 seconds

Development of High-performance Oxide Semiconductor Thin-Film Transistor with ITO buried layer by Annealed Microwave

  • Pyo, Ju-Yeong;Im, Cheol-Min;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.204.2-204.2
    • /
    • 2015
  • 산화물 반도체는 비정질임에도 불구하고 높은 이동도를 나타내며, 적은 누설 전류, 낮은 소비전력, 저온 공정 가능, 가시광선 영역에서 투명한 성질을 가지고 있다. 이와 같은 다양한 장점들로 인해 산화물 반도체를 이용한 트랜지스터는 차세대 플랫 패널 디스플레이 적용에 있어서 핵심 기술로 각광받고 있다. 한편, 소자의 크기가 점점 더 작아짐에 따라 고집적화에 따른 scaling down은 항상 언급되는 이슈이다. 이와 관련하여 소자의 높은 on current는 트랜지스터를 더 작게 구현할 수 있다는 가능성을 보여준다. 따라서 현재 소자의 on current를 높이기 위해서 소자의 구조를 변형하는 연구가 활발히 진행되고 있다. 본 연구에서는 소자의 on current를 높이기 위한 방법으로 ITO buried layer를 이용한 산화물 반도체 pseudo 트랜지스터를 제작하였다. 먼저 채널을 형성하기 전에 ITO buried layer를 형성시켜준 후, 채널 영역으로서 InGaZnO (2:1:1)를 용액 공정을 이용하여 형성시켰다. 이어서 소자의 전기적 특성 향상을 위해 마이크로웨이브 열처리를 1800 W에서 2분간 실시하였다. 또한 대조군으로 ITO buried layer를 갖지 않는 소자를 같은 방법으로 제작하여 평가하였다. 그 결과 ITO buried later를 갖는 소자에서 대조군과 비교하여 높은 on current를 나타냄을 확인하였다. 이와 같은 결과는 낮은 저항의 ITO buried layer가 current path를 제공함과 동시에 더 두꺼운 채널 층을 형성시켜 높은 on current에 기여하기 때문이다. 결과적으로 ITO buried layer를 갖는 소자 구조를 이용함으로써 고성능 트랜지스터를 제작하여 소자를 집적화 함에 있어서 유망한 소자가 될 것으로 예상된다.

  • PDF

The Optical Properties of Si3N4/SnZnO/AZO/Ag/Ti/ITO Multi-layer Thin Films with Laminating Times (Si3N4/SnZnO/AZO/Ag/Ti/ITO 다층 박막의 적층 횟수에 따른 광학적 특성)

  • Lee, Sang-Yun;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.1
    • /
    • pp.7-11
    • /
    • 2015
  • In this study, $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film were prepared on glass substrate by DC/RF magnetron sputtering method. To prevent interfacial reaction between Ag and ITO layer, Ti buffer layer was inserted. Optical properties and sheet resistance were studied depending on laminating times of each multi-layered film especially in visible ray. The simulation program, EMP (essential macleod program), was adopted and compared with experimental data to expect the experimental result. It was found out that the transmittance of the first stacked $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film was more than 90%. However, with increasing stacking times, the optical properties of $Si_3N_4$/SnZnO/AZO/Ag/Ti/ITO multi-layer film get worse. Consequently, Ti layer is good for oxidation barrier, but too many uses of this layer may have an adverse effect to optical properties of TCO film.

A Study on VPT phosphor screen formed by screen printing and thermal transfer method (스크린 인쇄법 및 열전사법에 의한 VPT 형광막의 형성연구)

  • Cho M.J.;Nam S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.593-594
    • /
    • 2006
  • A novel thermal transfer method was developed to form the phosphor screen for VPT(Video Phone Tube). This method have advantages of simple process, clean environment, saving raw material and running-cost comparison of electrodeposition, spin coating of conventional methods. But now applying phosphor screen for thermal transfer method has been formed three layers (phosphor layer, ITO layer and thermal adhesive layer) on the PET film as substrate. This is complex process, run to waste of raw-material and require of high cost. Also ITO paste at present has been imported from Japan. To improve these problems, we have manufactured phosphor screen formed by two layers (phosphor layer and ITO layer). We have developed ITO paste that had both conductive and excellent thermal transfer abilities, made it of domestic raw-material.

  • PDF

Ni-assisted growth of transparent and single crystalline indium-tin-oxide nanowires

  • Kim, Hyeon-Gi;Kim, Jun-Dong;Park, Hyeong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.259-259
    • /
    • 2015
  • Single crystalline indium-tin-oxide (ITO) nanowires (NWs) were grown by sputtering method. A thin Ni film of 5 nm was deposited before ITO sputtering. Thermal treatment forms Ni nanoparticles, which act as templates to diffuse Ni into the sputtered ITO layer to grow single crystalline ITO NWs. This Ni diffusion through an ITO NW was investigated by transmission electron microscope to observe the Ni-tip sitting on a single crystalline ITO NW. Meanwhile, a single crystalline ITO structure was found at bottom and body part of a single ITO NW without remaining of Ni atoms. This indicates the Ni atoms diffuse through the oxygen vacancies of ITO structure. Rapid thermal process (RTP) applied to generate an initial stage of a formation of Ni nanoparticles with variation in time periods to demonstrate the existence of an optimum condition to initiate ITO NW growth. Modulation in ITO sputtering condition was applied to verify the ITO NW growth or the ITO film growth. The Ni-assisted grown ITO layer has an improved electrical conductivity while maintaining a similar transmittance value to that of a single ITO layer. Electrically conductive and optically transparent nanowire-coated surface morphology would provide a great opportunity for various photoelectric devices.

  • PDF

RF Magnetron Sputter에 의해 제조된 ITO/Ag/AZO 다층박막의 전기적.광학적 특성

  • Kim, Min-Hwan;An, Jin-Hyeong;Kim, Sang-Ho
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2006.10a
    • /
    • pp.51-55
    • /
    • 2006
  • ITO/Ag/AZO and AZ0/Ag/ITO multi-layer films deposited on glass substrate by RF magnetron sputtering have a much better electrical properties than ITO and AZO single-layer films. The multi-layer structure was consisted of three layers of ITO, Ag and AZO. The optimum working pressure of AZO layers deposition was determined to be $1.0{\times}10^{-2}$ torr for high optical transmittance and good electrical conductivity. The electrical and optical properties of sub/IT0/Ag/AZO were higher than those of sub/AZ0/Ag/ITO multi-layer films.

  • PDF

Transmittance measurement for thickness control of ITO layer (ITO막의 두께 제어를 위한 투과율 측정)

  • 박정규;이무영
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.213-213
    • /
    • 2000
  • A sensor system which can measure the transmittance of ITO(Indium Tin Oxide) layed glass is proposed. The sensor system includes a single wavelength laser beam source, photo diodes and electronic circuit processing sensor signal. The wavelength of laser is 543.5 m, this is most sensitive wavelength to photopic and scotopic vision. We applied the sensor to measure transmittance of ITO layer on general manufacturing environment and verified the effectiveness of sensor through experimental measurement.

  • PDF

Enhanced Performance of the OLED with Plasma Treated ITO and Plasma Polymerized Methyl Methacrylate Buffer Layer (ITO 플라즈마 표면처리와 ppMMA 버퍼층으로 제작한 OLED의 발광특성)

  • Lim Jae-Sung;Shin Paik-Kvun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.30-33
    • /
    • 2006
  • Transparent indium tin oxide (ITO) anode surface was modified using $O_3$ Plasma and organic ultrathin buffer layers were deposited on the ITO surface using 13.56 MHz RF plasma polymerization technique. The EL efficiency, operating voltage and lifetime of the organic light-emitting device (OLED) were investigated in order to study the effect of the plasma surface treatment and role of plasma polymerized organic ultrathin buffer layer. Poly methylmethacrylate (PMMA) layers were plasma polymerized on the ITO anode as buffer layer between anode and hole transport layer (HTL). The plasma polymerization of the organic ultrathin layer were carried out at a homemade capacitive-coupled RF plasma equipment. N,N'-diphenyl-N,N'(3- methylphenyl)-1,1'-diphenyl-4,4'-diamine (TPD) as HTL, Tris(8-hydroxyquinolinato) Aluminum $(Alq_3)$ as both emitting layer (EML)/electron transport layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Effects of the plasma surface treatment of ITO and plasma polymerized buffer layers on the OLED performance were discussed.

Optimization of Printing Process for the Development of Metal-oxide Resistivity Sensor (전기저항형 금속산화물 센서의 인쇄공정 최적화에 관한 연구)

  • Lee, Seokhwan;Koo, Jieun;Lee, Moonjin;Jung, Jung-Yeul;Chang, Jiho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.6
    • /
    • pp.353-358
    • /
    • 2016
  • In this paper, we have studied about the optimum fabrication condition of the printed Indium Tin Oxide (ITO) layers for the electrical resistance-type sensor application. We have investigated on the substrates surface treatments, mixing ratio of organic binder/ITO powder, and viscosity of the printing paste to determine the optimum condition of the screen printed ITO layer. Also, we found that the printing condition is closely related with the sensor performance. To know the feasibility of printed ITO layer as an electrical resistance-type sensor, we have fabricated the ITO sensors with a printed and sputtered ITO layers. The printed ITO films revealed $10^2$ times higher sensitivity than the sputtered ITO layer. Also, the sputtered ITO layer exhibited an operating temperature of $127^{\circ}C$ at the operating voltage of 5 V. While, in case of the printed ITO layer showed the operating temperature of $27.6^{\circ}C$ in high operating voltage of 30 V. We found that the printed ITO layer is suitable for the various sensor applications.

The Development of ITO Paste for VPT Phosphor Screen Manufacture (VPT 형광막 제조용 ITO Paste의 개발)

  • Lee, Mi-Young;Woo, Jin-Ho;Kim, Young-Bea;Nam, Su-Yong;Lee, Sang-Nam;Moon, Myung-Jun
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.22 no.2
    • /
    • pp.73-82
    • /
    • 2004
  • A thermal transfer method was developed novel method to form the phosphor screen for monochrom VPT. This method have advantages of simple process, clean environment, saving raw material and running-cost. But now applying phosphor screen for thermal transfer method has been formed three layers (phosphor layer, ITO layer and thermal adhesive layer) on the PET film as substrate. This is complex process, consumption of raw-material and require of high cost. Also ITO paste at present has been imported from Japan. To improve these problems, we have developed ITO paste as conductive paste by using ITO sol and binder resin (AA3003). Ito paste as developed in this study has both conductive and excellent thermal transfer abilities. Thus we could manufacture phosphor screen formed two layers (phosphor layer and ITO layer).

  • PDF

Electrical and Optical Properties of ITO Thin Films with Various Thicknesses of SiO2 Buffer Layer for Capacitive Touch Screen Panel (정전용량식 터치스크린 패널을 위한 SiO2 버퍼층 두께에 따른 ITO 박막의 전기적 및 광학적 특성)

  • Yeun-Gun, Chung;Yang-Hee, Joung;Seong-Jun, Kang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1069-1074
    • /
    • 2022
  • In this study, we prepared ITO thin films on the Nb2O5/SiO2 double buffer layer and investigated electrical and optical properties according to the change of SiO2 buffer layer thickness (40~50nm). The ITO thin film fabricated on the Nb2O5/SiO2 double buffer layer exhibited a broad surface roughness with a small value ranging of 0.815 to 1.181nm, and the sheet resistance was 99.3 to 134.0Ω/sq. It seems that there is no problem in applying the ITO thin film to a capacitive touch screen panel. In particular, the average transmittance in the short-wavelength (400~500nm) region and the chromaticity (b*) of the ITO thin film deposited on the Nb2O5(10nm)/SiO2(40nm) double buffer layer showed significantly improved results as 83.58% and 0.05, respectively, compared to 74.46% and 4.28 of ITO thin film without double buffer layer. As a result, it was confirmed that optical properties such as transmittance in the short-wavelength region and chromaticity were remarkably improved due to the index matching effect in the ITO thin film with the Nb2O5/SiO2 double buffer layer.