• Title/Summary/Keyword: ITO (Indium Tin Oxide)

Search Result 835, Processing Time 0.029 seconds

Fabrication and Characterization of the ITO/Au/ITO Thin Film Gas Sensor by RF Magnetron Sputtering and electron Irradiation (RF 스퍼터와 전자빔 조사를 이용한 ITO/Au/ITO 가스센서 제조 및 특성 평가)

  • Heo, Sung-Bo;Lee, Hak-Min;Kim, Yu-Sung;Chae, Ju-Hyun;You, Yong-Zoo;Kim, Dae-Il
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.24 no.2
    • /
    • pp.87-91
    • /
    • 2011
  • Single layer Sn doped $In_2O_3$ (ITO) films and ITO 50 nm / Au 10 nm / ITO 40 nm (IAI) multilayer films were prepared with electron beam assisted magnetron sputtering on glass substrates. The effects of the Au interlayer, post-deposition atmosphere annealing and intense electron irradiation on the methanol gas sensitivity were investigated at room temperature. As deposited ITO films did not show any diffraction peaks in the XRD pattern, while the IAI films showed the diffraction peak for $In_2O_3$ (400). In this study, the gas sensitivity of ITO and IAI films increased proportionally with the methanol vapor concentration and an intense electron beam irradiated IAI film shows the higher sensitivity than the others film. From the XRD pattern, it is supposed that increased crystallization promotes the gas sensitivity. This approach is promising in gaining improvement in the performance of IAI gas sensors used for the detection of methanol vapor at room temperature.

스퍼터링을 이용한 ITO 박막의 저온 증착

  • Jang, Seung-Hyeon;Lee, Yeong-Min;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.263-263
    • /
    • 2010
  • 투명도전막(indium tin oxide; ITO)은 투명하면서도 전기 전도도가 높기 때문에, 액정표시소자(LCD; Liquid Crystal Display), 전자발광소자(ELD; Electroluminescent Display) 및 전자 크로믹 소자(Electrochromic Display)를 포함하는 평판형 표시 소자(FPD; Flat Panel Display)와 태양전지 등에 이용되고 있다. 낮은 비저항과 높은 투과율의 ITO 박막은 $300^{\circ}C$ 이상의 고온에서 코팅해야 하는 것으로 알려져 있다. 그러나 최근 플라스틱과 같은 연성 소자가 전자부품에 널리 이용되면서 ITO를 저온에서 증착해야할 필요성이 대두되고 있다. 본 연구에서는 ITO를 플라스틱에 적용하기 위한 저온 코팅 공정 및 시편의 전 후처리공정을 개발하여 박막의 특성을 알아보고자 한다. 실험에 사용된 기판은 고투과율의 고분자(polyethylene terephthalate; PET) 필름이며 $5\;{\times}\;10\;cm^2$의 크기로 절단하여 알코올로 초음파 세척을 실시하였고, 진공 용기에 장입한 후 펄스전원을 이용하여 3분간 in-situ 청정을 실시하였다. ITO 코팅은 마그네트론 스퍼터링을 이용하였으며, 코팅시간, 전처리, 후처리, 기판온도, 산소유량 등 코팅 조건에 따른 박막의 특성을 조사하였다. ITO 박막의 코팅 조건에 따른 박막의 결정구조 분석은 x-선 회절(x-ray diffraction; XRD)을 이용하였고, 박막의 표면형상과 두께 보정 및 단면의 미세조직과 결정 성장 여부 등은 투과전자 현미경(transmission electron microscope; TEM)을 이용하여 분석하였다. 또한 ITO 박막의 면저항과 분광특성은 four-point Probe (CMP-100MP, Advanced Instrument Technology), spectrophotometer (UV-1601, SHIMADZU)를 이용하여 측정하였다. ITO 박막의 광학특성 분석 결과 전광선 투과율은 두께에 따라 변화 하였지만, 색차와 Haze 값은 증착 조건에 따라 큰 차이는 보이지 않았다. 그리고 박막의 결정화에 영향을 주는 가장 중요한 인자는 기판온도이지만, 기판온도를 높이지 못할 경우 비평형 마그네트론(unbalanced-magnetron; UBM)에 의해서 플라즈마 밀도를 높이는 방법으로 유사한 효과를 얻을 수 있음을 확인하였다.

  • PDF

Characteristics of Large Area ITO/PET Fabricated by Vacuum Web Coater (진공 웹코터로 제작된 대면적 ITO/PET의 특성 연구)

  • Kim, Ji-Hwan;Park, Dong-Hee;Kim, Jong-Bin;Byun, Dong-Jin;Choi, Won-Kook
    • Korean Journal of Materials Research
    • /
    • v.17 no.10
    • /
    • pp.516-520
    • /
    • 2007
  • Indium tin oxide, which is used as transparent conducting layer in flexible device, is deposited on PET film by a magnetron sputtering in 300 mm wide roll-to-roll process (vacuum web coating). Sheet resistance, specific resistance and transmittance is differed by sputtering parameters such as working pressures, oxygen partial pressure, and thickness of ITO layer. ITO layer is deposited about 90 nm at roll speed of 0.24 m/min and its sputtering power is 3 kW. From the XRD spectrum deposited ITO layer is verified as amorphous. Under working pressure varied from $3{\times}10^{-4}\;Torr$ to $2{\times}10^{-3}\;Torr$, sheet resistance is lowest at the working pressure of $1{\times}10^{-3}\;Torr$ and its value is from $110\;{\Omega}/{\square}$ to $260\;{\Omega}/{\square}$ at the thickness of 90 nm. Oxygen partial pressure also varies sheet resistance and is optimized at the regime from 0.2% ($1.8{\times}10^{-6}\;Torr$) to 0.6% ($6{\times}10^{-6}\;Torr$). In this oxygen partial pressure sheet resistance is lower than $150\;{\Omega}/{\square}$. As ITO layer thickness increases, sheet resistance decreases down to $21\;{\Omega}/{\square}$ and specific resistance is about $7.5{\times}10.4{\Omega}cm$ in 340 nm thickness ITO layer. Transmittance is measured at the wavelength of 550 nm and is about 90% for 180 nm thickness ITO/PET.

Effect of the substrate temperature on the properties of transparent conductive IZTO films prepared by pulsed DC magnetron sputtering

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Son, Dong-Jin;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.167-167
    • /
    • 2010
  • Indium tin oxide (ITO) has been widely used as transparent conductive oxides (TCOs) for transparent electrodes of various optoelectronic devices, such as liquid crystal displays (LCD) and organic light emitting diodes (OLED). However, indium has become increasingly expensive and rare because of its limited resources. In addition, ITO thin films have some problems for OLED and flexible displays, such as imperfect work function, chemical instability, and high deposition temperature. Therefore, multi-component TCO materials have been reported as anode materials. Among the various materials, IZTO thin films have been gained much attention as anode materials due to their high work function, good conductivity, high transparency and low deposition temperature. IZTO thin films with a thickness of 200nm were deposited on Corning glass substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt%, ZnO 15 wt%, SnO2 15 wt%). We investigated the electrical, optical, structural properties of IZTO thin films. As the substrate temperature is increased, the electrical properties of IZTO are improved. All IZTO thin films have good optical properties, which showed an average of transmittance over 80%. These IZTO thin films were used to fabricate organic light emitting diodes (OLEDs) as anode and the device performances studied. As a result, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Synthesis of functional ZnO nanoparticles and their photocatalytic properties

  • Nam, Sang-Hun;Kim, Myoung-Hwa;Lee, Sang-Duck;Kim, Min-Hee;Boo, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.54-54
    • /
    • 2010
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation(REDOX) reaction will occur on the ZnO surface and generate ${O_2}^-$ and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into $CO_2$ and $H_2O$. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with $TiO_2$. $Zn(OH)_2$ was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

LCoS projection display 제작을 위한 index matched transparent conducting oxide가 coating된 glass

  • Im, Yong-Hwan;Yu, Ha-Na;Lee, Jong-Ho;Choe, Beom-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.451-451
    • /
    • 2010
  • 최근들어 80인치 이상의 대경 고화질 display 및 휴대용 projection display 제작이 가능한 LCoS (Liquid Crystal on Silicon) display에 대한 관심이 높아지고 있다. LCoS projection display는 높은 개구율, 빠른 응답속도, 고화질, 대형 디스플레이 임에도 불구하고 낮은 제조단가 등의 여러 가지 장점을 가지고 있다. LCoS projection display의 핵심 기술로는 높은 투과도와 낮은 반사율을 갖는 유리기판, 무기 배향막 증착 기술, Si back plane과의 접합기술 등이 있다. 이 중 LCoS projection display 제작을 위한 첫 단계인 유리기판은 가시광선 영역에서 96% 이상의 높은 투과도와 3% 미만의 반사도를 요구하는 기술을 필요로 한다. 본 연구에서는 indium이 doping된 tin oxide (ITO)를 투명 전도성막으로 사용하고, $SiO_2/MgF_2$ 이중 박막을 반사방지막으로 채택하여 고투과도 및 저반사율을 갖는 유리기판 제조에 응용하였다. 먼저 15nm 두께의 ITO 박막을 DC sputtering을 이용하여 8-inch 크기의 corning1737 유리기판 상에 증착한 후, 그 반대편에 e-beam evaporation 장비를 사용하여 120nm 두께의 반사 방지막을 증착하였다. 또한 유리기판 상에 증착된 투명 전도성막의 표면개질을 위하여 Ar plasma를 이용하여 treatment를 수행하였다. 이 때 sputtering 조건은 DC power, Ar 유량 및 압력을 조절함으로서 높은 투과도를 갖는 최적의 조건을 구현하였고, e-beam evaporation을 이용한 반사방지막 증착 조건은 $SiO_2$$MgF_2$의 계면에서 빛의 반사를 최소화할 수 있는 최적의 조건을 구현하였다. 제작된 유리기판은 가시광선 영역에서 97% 이상의 투과도를 보였으며, 최대 2.8%의 반사율을 보여, LCoS display 제작에 적합함을 확인할 수 있었다. 또한 Ar plasma 처리 후 ITO 박막의 면저항 값은 $100\;{\omega}/{\Box}$, 표면 거칠기는 rms 값 기준 0.095nm, 접촉각 $20.8^{\circ}$의 특성을 보여, 타 index matched transparent conducting oxide가 coating된 유리기판에 비해 우수한 특성을 보였다.

  • PDF

Influence of Magnetic Field Near the Substrate on Characteristics of ITO Film Deposited by RF Sputtering Method (기판 부근의 자기장이 RF 스퍼터링법으로 증착된 ITO 박막의 특성에 미치는 영향)

  • Kim, Hyun-Soo;Jang, Ho-Won;Kang, Jong-Yoon;Kim, Jin-Sang;Yoon, Suk-Jin;Kim, Chang-Kyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.563-568
    • /
    • 2012
  • Indium tin oxide (ITO) films were prepared using radio frequency (RF) magnetron sputtering method, magnets were equipped near the target in the sputter to bring the plasma near the target. The effect of magnetic field that brings the plasma near the substrate was compared with that of substrate heating. The effect of substrate heating on the grain size of the ITO thin film was larger than that of the magnetic field. However, the grain size of the ITO thin film was larger when the magnetic field was applied near the substrate during the sputtering process than when the substrate was not heated and the magnetic field was not applied. If stronger magnetic field is applied near the substrate during sputtering, it can be expected that the ITO thin film with good electrical conductivity and high transparency is obtained at low substrate temperature. When magnetic field of 90 Gauss was applied near the substrate during sputtering, the mobility of the ITO thin film increased from 15.2 $cm^2/V.s$ to 23.3 $cm^2/V.s$, whereas the sheet resistivity decreased from 7.68 ${\Omega}{\cdot}cm$ to 5.11 ${\Omega}{\cdot}cm$.

A Study on Adhesion and Electro-optical Properties of ITO Films deposited on Flexible PET Substrates with $SiO_2$ Buffer Layer (PET 기판 위해 $SiO_2$ 버퍼층 도입에 따른 IT 박막의 접착 및 전기적.광학적 특성 연구)

  • Kang, Ja-Youn;Kim, Dong-Won;Yun, Hwan-Jun;Park, Kwang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.316-316
    • /
    • 2008
  • Using an evaporation method, $SiO_2$ was deposited as a buffer layer between a flexible PET substrate and a ITO film deposited by DC magnetron sputtering and electro-optical properties were investigated with thickness variance of $SiO_2$ layers. After coating a $SiO_2$ layer and a ITO film, the ITO/$SiO_2$/PET was heated up to $200^{\circ}C$ and the resistivity and the transmittance were measured by hall effect measurement system and UV/VIS/NIR spectroscopy. As a result of depositing a $SiO_2$ buffer layer, the resistivity increased and the transmittance and adhesion property were enhanced than ITO films with no buffer layers and the resistivity was lowered as $SiO_2$ thickness increased from 50 $\AA$ to 100 $\AA$. It was found that the transmittance was independent of annealing temperature variance in $150^{\circ}C{\sim}200^{\circ}C$ and the resistivity decreased as the temperature increased and especially decreasing rate of the resistivity was higher as the buffer layer thickness was thinner. So under optimized depositing of $SiO_2$ buffer layers and post-annealing of ITO/$SiO_2$/PET, ITO films with enhanced adhesion, electro-optical properties can obtained.

  • PDF

Research on Transparent LED Display with Use of Metal Mesh (메탈메쉬를 활용한 투명 LED 디스플레이에 관한 연구)

  • Hwang, In-Kwan;Roh, Su-Sung
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.10-17
    • /
    • 2015
  • Transparent LED display is providing city residents with different attractions via information services and landscape and increasing demand is detected in various areas. It is true that majority of the current demand in transparent electrode material was found and used in ITO but limitations in capacity and economic efficiency led to the need for continuous research and technology development via new materials. As a new material, metal mesh has 85% of the materials to substitute ITO and is widely used due to low-cost and high-conductive rate. Maintenance of transparent LED display utilizing metal mesh compared to existing ITO transparent display is much easier as it not only saves resources but is also economical. Thus the objective of this paper lies in proposing the utilization of metal mesh in transparent LED display prototype to enable economical use of transparent LED display technology and to expand the market and to also propose transparent LED display development method via metal mesh and manufacture a prototype based on the method. And a characteristic comparison test between ITO and metal mesh provides the possibility of using metal mesh as a transparent electrode material in transparent LED display development.