• Title/Summary/Keyword: ITO (Indium Tin Oxide)

Search Result 835, Processing Time 0.029 seconds

Growth of Electrochemical Nickel Thin Film on ITO(Indium Tin Oxide) Electrode (ITO(Indium Tin Oxide) 전극상의 전기화학적 Nickel 박막형성)

  • Kim, Woo-Seong;Seong, Jeong-Sub
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.7 no.2
    • /
    • pp.155-161
    • /
    • 2002
  • We studied the formation of nickel nano thin film that have various electrochromic properties. Nickel thin film having various thickness will apply photoelectronic devices, specially, electrochromic devices. These devices will apply lens, battery, glass and solar cell that have light, thin, simple and small that applied nanotechnology and quantum dot. Nickel thin film was coated by electrochemical method on ITO electrode. We studied the thin film properties by Cyclic voltammetry, Chronoamperometry. Impedance. X-ray diffraction analysis and Atomic force microscopy.

  • PDF

Synthesis of nano porous indium tin oxide by sol-gel combustion hybrid method (졸겔 연소법에 의한 nano crystalline ITO제작 및 특성)

  • Jung, Ki-Young;Kwak, Dong-Joo;Sung, Youl-Moon;Park, Cha-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1328_1329
    • /
    • 2009
  • Nano porous indium tin oxide (ITO) powder was synthesized employing a new route sol-gel combustion hybrid method using Ketjen Black as a fuel. The nano porous ITO powder was composed of $SnCl_4$-98.0% and $In(NO_3)_3{\cdot}XH_2O$-99.999%, produce with a $NH_4OH$ with sol-gel method as a catalyst [1,2]. Crystal structures were examined by powder X-ray diffraction (XRD), and those results show shaper intensity peak at $25.6^{\circ}(2{\Theta})$ of $SnO_2$ by increased sintering temperature. A particle morphology as well as crystal size was investigated by scanning electron microscopy(FE-SEM), and the size of the nano porous powder was found to be in the range of 20~30nm. ITO films could controlled by nano porous powder at various sintering temperature in this paper[3,4]. The sol-gel combustion method was offered simple and effective route for the synthesis of nano porous ITO powder[5].

  • PDF

The Wet Etching Rate of Metal Thin Film by Sputtering Deposition Condition (스퍼터링 증착 조건에 따른 금속 박막의 습식 식각율)

  • Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.6
    • /
    • pp.1465-1468
    • /
    • 2010
  • The wet etching is a process using chemical solution and occurring chemical reaction on substrate surface. when we do wet etching process, we have to consider stoichiometry, etching time and temperature of etchant for good resolution. In this experiment, we used Cr, Al andIndium-tin-oxide (ITO) metal and we deposited them with DC sputtering machine. The Cr thin film metal thickness is about $1300{\AA}$, ITO films show a low electrical resistance and high transmittance in the visible range of an optical spectrum and Ai film is used for signal line. We measured and analysed wet etching properties on the metal thin films.

Stress Distribution of Indium-tin-oxide (ITO) Film on Flexible Substrate by Bending process (Flexible 기판 위의 Bending 처리에 따른 ITO 필름의 Stress 분포 특성)

  • Park, Jun-Back;Hwang, Jeoung-Yeon;Seo, Dae-Shik;Park, Sung-Kyu;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.181-184
    • /
    • 2003
  • In this paper, we investigated the position-dependent stress distribution of indium-tin-oxide (ITO) film on Polycarbonate (PC) substrate by external bending force. It was found that there are the maximum crack density at the center position and decreasing crack density as goes to the edge. In accordance with crack distribution, it was observed that the change of electrical resistivity of ITO islands is maximum at the center and decrease as goes to the edge. From the result that crack density is increasing at same island position as face-plate distance (L) decreases, it is evident that the more stress is imposed on same island position as L decreases.

  • PDF

Study on IZTO and ITO Films Deposited on PI Substrate by Pulsed DC Magnetron Sputtering System

  • Ko, Yoon-Duk;Kim, Joo-Yeob;Joung, Hong-Chan;Lee, Chang-Hun;Bae, Jung-Ae;Choi, Byung-Hyun;Ji, Mi-Jung;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.93-93
    • /
    • 2011
  • The Indium Zinc Tin Oxide (IZTO) and Indium Tin Oxide (ITO) thin films are grown on PI substrate at different substrate temperature by pulsed DC magnetron sputtering with a sintered ceramic target of IZTO (In2O3 70 wt.%, ZnO 15 wt.%, SnO2 15 wt.%) and ITO (In2O3 90wt.%, SnO2 10wt.%). The structural, electrical, and optical properties are investigated. The IZTO thin films deposited at low temperature showed relatively low electrical resistivity compared to ITO thin films deposited at low temperature. As a result, we could prepare the IZTO thin films with the resistivity as low as $5.6{\times}10^{-4}({\Omega}{\cdot}m)$. Both of the films deposited on PI substrate showed an average transmittance over 80% in visible range (400.800nm). Overall, IZTO thin film is a promising candidate as an alternative TCO material to ITO in flexible and OLED devices.

  • PDF

Improvement of High-Temperature Performance of LiMn2O4 Cathode by Surface Coating (표면코팅을 통한 LiMn2O4 양극의 고온성능 개선)

  • Lee, Gil-Won;Lee, Jong-Hwa;Ryu, Ji-Heon;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.1
    • /
    • pp.81-87
    • /
    • 2009
  • An indium-tin oxide (ITO) coated spinel manganese oxide (${LiMn_2}{O_4}$, LMO) is prepared and its high-temperature ($55^{\circ}C$) cycle performance and rate capability are examined. A severe electrolyte decomposition and film deposition is observed on the un-coated ${LiMn_2}{O_4}$ cathode, which leads to a significant electrode polarization and capacity fading. Such an electrode polarization is, however, greatly reduced for the ITO-coated (> 2 mol%) LMO cathode, which leads to an improved cycle performance. This can be rationalized by a suppression of electrolyte decomposition, which is in turn indebted to a decrease in the direct contact area between LMO and electrolyte. The suppression of film deposition on the ITO-coated LMO cathode is confirmed by infra-red spectroscopy. The rate capability is also improved by the surface coating, which may be resulted from a suppression of resistive film deposition and high electric conductivity of ITO itself.

DOPING EFFICIENCIES OF OXYGEN VACANCY AND SN DONOR FOR ITO AND InO THIN FILMS

  • Chihara, Koji;Honda, Shin-ichi;Watamori, Michio;Oura, Kenjiro
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.876-879
    • /
    • 1996
  • The effect of oxygen vacancy and Sn donor on carrier density for Indium Tin oxide (ITO) and Indium oxide (InO) films has been investigated. Hot-cathode Penning discharge sputtering (HC-PDS) in the mixed gasses of argon and oxygen was applied to fabricate the ITO and InO films. Density of oxygen vacancy was estimated using a high-energy ion beam technique. The electrical properties of the films such as resistivity, carrier density and mobility were estimated by Van der Pauw method. The doping efficiency of oxygen vacancy could be obtained from the relationship between oxygen vacancy and carrier density. The doping efficiency of oxygen vacancy for ITO films resulted in a quite small value. Comparing the doping efficiencies of ITO and InO films, the effect of Sn donor on carrier density was also discussed.

  • PDF

Indium tin oxide films grown on polymer substrate by a low-frequency magnetron sputtering method

  • Jung, Sang-Kooun;Kim, Hong-Tak;Lee, Do-Kyung;Cho, Yong;Park, Lee-Soon;Park, Duck-Kyu;Sohn, Sang-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.992-995
    • /
    • 2004
  • In this study, we have grown indium tin oxide (ITO) thin films by using a low-frequency (60${\sim}$300 Hz) magnetron sputtering method and investigated characteristics of ITO thin films deposited on polyethersulfone substrates. The experimental results show that the films have good qualities in surface morphology, transmittance, and electrical conduction.

  • PDF

플렉서블 디스플레이용 투명전극 제조를 위한 ITO 대체소재 연구동향

  • Kim, Seon-Ok;Choe, Su-Bin;Kim, Jong-Ung
    • Ceramist
    • /
    • v.21 no.1
    • /
    • pp.12-23
    • /
    • 2018
  • As the flexible displays have been considered as a breakthrough to make a new electronics category, transparent electrodes have also confronted with an emerging issue, i.e., they also need to be mechanically flexible. For this to be made possible, a transparent electrode capable of withstanding large amounts of strain must be developed. Indium tin oxide (ITO) has been one of the most widely adopted transparent electrodes for displays and other transparent electronics, mainly supported by its high electrical conductivity and optical transparency. However, its brittle nature has forced the display industry to search for other alternatives. Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Here we reviewed recently-published research works introducing flexible displays, all of which are employing the novel candidates for a conducting material.

Characteristics of ITO/Ag/ITO Hybrid Layers Prepared by Magnetron Sputtering for Transparent Film Heaters

  • Kim, Jaeyeon;Kim, Seohan;Yoon, Seonghwan;Song, Pungkeun
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.807-812
    • /
    • 2016
  • Transparent film heaters (TFHs) based on Joule heating are currently an active research area. However, TFHs based on an indium tin oxide (ITO) monolayer have a number of problems. For example, heating is concentrated in only part of the device. Also, heating efficiency is low because it has high sheet resistance ($R_s$). To address these problems, this study introduced hybrid layers of ITO/Ag/ITO deposited by magnetron sputtering, and the electrical, optical, and thermal properties were estimated for various thicknesses of the metal interlayer. The $R_s$ of ITO(40)/Ag/ITO(40 nm) hybrid TFHs were 5.33, 3.29 and $2.15{\Omega}/{\Box}$ for Ag thicknesses of 10, 15, and 20 nm, respectively, while the $R_s$ of an ITO monolayer (95 nm) was $59.58{\Omega}/{\Box}$. The maximum temperatures of these hybrid TFHs were 92, 131, and $145^{\circ}C$, respectively, under a voltage of 3 V. And that of the ITO monolayer was only $32^{\circ}C$. For the same total thickness of 95 nm, the heat generation rate (HGR) of the hybrid produced a temperature approximately $100^{\circ}C$ higher than the ITO monolayer. It was confirmed that the film with the lowest $R_s$ of the samples had the highest HGR for the same applied voltage. Overall, hybrid layers of ITO/Ag/ITO showed excellent performance for HGR, uniformity of heat distribution, and thermal response time.