• Title/Summary/Keyword: IT-섬유

Search Result 3,693, Processing Time 0.033 seconds

Organic fiber reinforcement for Performance improvement of Blast resistance and Flexural Performance Evaluation of Fiber reinforced concrete using organic fiber reinforcement (방폭 성능 강화용 유기계 섬유보강재 제조 및 이를 혼입한 섬유보강 콘크리트의 휨성능 평가)

  • Jeon, Chanki;Jeon, Joongkyu;Kim, Sungil;Kim, Kihyung
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.2
    • /
    • pp.211-218
    • /
    • 2015
  • This study propose the organic fiber reinforcement for performance improvement of blast resistance. Proposed fibers are polyamide fiber, PET fiber and aramid fiber and fiber reinforcements were produced by ATY method. To evaluate strain energy absorption capacity of organic fiber reinforced concrete using organic fiber reinforcement, 4-point bending test and 3-point bending tests on notched beam were performed. Test results show that PET fiber reinforced concrete has outstanding performance. It is thought that the PET fiber is effective for the performance improvement of blast resistance.

The Experimental Study on Engineering Properties of Fiber - Reinforced Soil (섬유혼합 보강토의 공학적 특성에 관한 실험연구)

  • 조덕삼;김진만
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.107-120
    • /
    • 1995
  • The purpose of this study is to investigate the effects of fiber on engineering properties of Fiber-Reinforced Soil. Engineering properties of soil reinforced with discrete randomly oriented inclusion depend on soil density, particle size, grading, fiber length, tensile strength and stiffness of fiber, mixing ration of fiber, confining stress, etc.. in this paper, the influence of fiber shape, fiber length, fiber diameter, fiber content, cement content and curing duration on engineering characteristics(compaction, shear & permeability) were evaluated for typical soils produced from construction works through uniaxial compression tests and triaxial compression tests. From the experimental results, it was also investigated if there is an optimal range of fiber lengths and fiber contents for the tested soils and tested mono-filament fibers.

  • PDF

Reinforcing Characteristics of Hybrid Fiber Composite Fixed with Impact Anchor (타격식 앵커를 이용한 하이브리드 섬유보강재의 보강특성)

  • Ha, Sang-Su;Choi, Dong-Uk;Lee, Chin-Yong;Kim, Dong-Wan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.453-456
    • /
    • 2008
  • Fiber composite is high anticorrosive, high strength and low weight ratio of strength(1/4 of reinforcing bar) so that strengthens concrete structures without increase of additional weight. But fiber composite has a brittle character which increases to the maximum stress point lineally and is suddenly destroyed. Hybrid fiber composite is developed to overcome weakness of fiber composite. The hybrid fiber composite is manufactured by bar type and consists of 9:1 volume ratio(glass : carbon). In this study the result indicates that it is purposed to find out reinforcing characteristics of hybrid fiber composite fixed with impact anchor.

  • PDF

Trend in Digital Clothing Technology (디지털 의류 기술 개발 동향)

  • Kim, J.E.;Jeong, H.T.;Cho, I.Y.
    • Electronics and Telecommunications Trends
    • /
    • v.24 no.5
    • /
    • pp.20-29
    • /
    • 2009
  • 디지털 의류는 디지털 기술이 의류에 자연스럽게 융합되면서 옷을 입은 사람뿐만 아니라 외부의 디지털 기기와도 자유로운 소통이 가능한 의류이다. 1990년 후반부터 유럽과 미국에서는 섬유기술에 IT 기술을 융합하는 연구가 계속되고 있으며, 직물부품 및 직물회로를 구현하여 의류에 적용한 바 있다. 초기 디지털 의류는 군복과 같은 특수용도로 개발되었으나 요즘에는 MP3 플레이어 내장 의류, 색깔이 변하는 의류, 헬스케어 의류 등 일상생활용도의 의류가 개발되는 추세이다. 디지털 의류는 신소재 산업, 센서 산업 등 기술 집약 산업의 활성화는 물론, 기존 전통 산업에 IT 기술을 접목함으로써 섬유, 패션, 의류산업의 확장과 활성화에 큰 역할을 할 것으로 전망된다. 앞으로 우리나라가 디지털 의류 시장을 선도하기 위해서는 섬유 IT 및 의류 IT융합 핵심기술의 확보가 시급하다. 본 고에서는 섬유 IT 융합분야의 이해를 높이고자 디지털 의류 기술 개발의 동향을 살펴보고 향후 기술발전 방향을 전망해 보고자 한다.

A Preliminary Study of Pulse Measurement Estimation Using Textile Proximity Sensor (섬유근접센서를 이용한 맥박 측정 평가의 기초연구)

  • Ho, JongGab;Wang, Changwon;Jung, HwaYoung;Na, Ye-Ji;Lee, Sangjoon;Min, Se Dong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.865-867
    • /
    • 2016
  • 본 논문에서는 섬유근접센서를 이용하여 측정한 맥박을 평가하기 위해 Biopac MP150에서 획득한 Electrocardiography(ECG)와의 관계를 보았다. 섬유근접센서는 요골동맥에서의 맥박을 측정하기 위해 $5{\times}5$ 크기로 설계하였고, 전처리 과정과 필터링을 거쳐 획득한 데이터 값은 ECG 데이터와 Peak Point의 개수를 비교하여 올바른 맥박이 측정되었는지를 판단하였다. 그 결과 섬유근접센서와 MP150에서 측정한 두 데이터의 Peak Point가 모두 동일한 결과를 보였다.

The Field Applicability of Road Pavement Layer with Grid Typed Reinforcement and Dispersive Fiber (그리드형 보강재와 분산성 섬유를 활용한 도로 포장층의 현장 적용 특성)

  • Park, Ju-Won;Kim, Hun-Kyum;Kim, Sung-Bo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.53-59
    • /
    • 2018
  • This study analyzed the field applicability through the combination of environment-friendly grid-typed reinforcements and pre-mixed fiber with filler. The film of the grid-typed reinforcement is made by recycled PE resin. And, Ascon fiber is obtained the dispersion by pre-mixing of filler. To be able to recognize in advance the various circumstances that could arise in the construction of the road pavement layer, we conducted a basic field application test of the (Mock Up) pavement layer. As a result, it was found that the pavement with environment-friendly grid-typed reinforcement and dispersive fiber construction had improved strength, stress, and rutting resistance. It is consistent with the strength and stress results of the actual test of the mock up specimen. It is expected to perform an effective role in the safety as well as the use of environment-friendly fibers in actual construction.

3차원 및 가상공간 기술을 이용한 디지털 패션섬유제품

  • 박창규;김성민
    • Fiber Technology and Industry
    • /
    • v.8 no.1
    • /
    • pp.30-42
    • /
    • 2004
  • 최근의 정보통신(IT; information technology)과 마이크로프로세서(microprocessor) 기술의 급속한 발달은 생활과 문화 뿐만 아니라 산업 전반에 걸쳐 많은 변화를 예고하고 있으며, 특히 디지털(digital) 기술의 발전은 섬유 $.$패션 산업 분야에도 혁신을 가져와, 3차원 기술과 가상공간(virtual space) 혹은 가상현실(virtual reality) 응용시스템을 활용한 상품기획과 생산 및 소비가 가능해지고 있으며, 이러한 혁신에 따라 섬유 $.$패션 산업은 생산자 중심의 산업에서 벗어나 소비자 중심의 산업으로 변화되어가고 있다.(중략)

  • PDF

Engineering Property of Basalt Fiber as a Reinforcing Fiber (보강 섬유로서 현무암 섬유의 공학적 특성)

  • Choi, Jeong-Il;Jang, Yu-Hyun;Lee, Jae-Won;Lee, Bang-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • Basalt fiber has many advantages as a reinforcing fiber such as high tensile strength and similar density to concrete. This study investigated the bonding property and the effect of fiber orientation on tensile strength of basalt fiber. Single fiber pullout tests for basalt and polyvinyl alcohol (PVA) fibers were performed to evaluate the bonding property between basalt fiber and mortar. And then tensile strength of basalt, PVA, and polyethylene (PE) fibers according to fiber orientation were measured. From the test results, it was exhibited that the chemical bond, frictional bond, and slip-hardening coefficient of basalt fiber were 1.88, 1.03, 0.24 times of PVA fibers, respectively. And the strength reduction coefficient of basalt fiber was 9 times of PVA fiber and 3 times of PE fiber.

The Effect of Steel Fiber on the Compressive Strength of the High Strength Steel Fiber Reinforced Cementitious Composites (강섬유의 혼입이 고강도 강섬유 보강 시멘트 복합체의 압축강도에 미치는 영향)

  • Kang, Su-Tae;Kim, Sung-Wook;Park, Jung-Jun;Koh, Gyung-Taek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.3
    • /
    • pp.101-109
    • /
    • 2008
  • Many researchers have reported that adding steel fiber to concrete improved its tensile and flexural strength significantly, but relatively few studies have been made on the compressive behavior of steel fiber-reinforced concrete. It is still less in case of high strength steel fiber-reinforced cementitious composites(SFRC). The main objective of this research is to examine the effect of adding steel fiber on the compressive strength of high strength SFRC using fiber reinforcing index(RI, $V_f(I_f/d_f)$). It was found from the study that compressive strength was noticeably increased in proportion to RI. In conclusion, the relationship between Reinforcing Index(RI) and compressive strength in case of high strength steel fiber-reinforced cementitious composites was suggested.