• Title/Summary/Keyword: IT Diffusion

Search Result 3,911, Processing Time 0.03 seconds

Development of Safe Stove System using Sound Wave Fire Extinguisher (음파 소화기를 이용한 안전 스토브 시스템 개발)

  • Seo, Yunwon;Lee, Sukjae;Park, yungjoo;Kim, Kinam;Choi, Yongrae;Hwang, Hyungjun;Han, Seunghan;Shim, Dongha
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • In this paper, the architecture of a safe stove with an automatic fire suppression function using a sound wave fire extinguisher has been proposed and developed for the first time. A microcontroller connected to a fire sensor detects and suppresses a fire by driving a fire extinguisher. The sound wave fire extinguisher is composed of a speaker and collimator, and is driven by a driver module including an audio amplifier. The attenuation of the sound wave is reduced by preventing the sound diffusion with an enclosure surrounding a stove. The frequency of the sound wave is set to 50 Hz, and the sound pressure of 93 dBA is measured at the distance of 0.5 m. It takes maximum 8 and 15 seconds to suppress the flame from 7-cc and 14-cc flammable liquid, respectively, which corresponds to 24% and 42% of the natural extinguishing time. Since the proposed safe stove is non-toxic and leaves no residues over the conventional ones, it would combine with various home appliances to suppress early-stage fires and prevent fire expansion.

A Study on the Diffusion of Silla Roof-End Tile (신라기와의 지방확산에 대한 검토)

  • Yang, Jong-Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.100-113
    • /
    • 2012
  • In the midst of recent active excavation, lots of Silla(新羅) roof-end tiles are unearthed in Yeongnam area(嶺南地域). These are confirmed the same tile frame as the Silla tiles excavated in Gyeongju(慶州). It is represented by the Silla tiles excavated in Ingaksa Temple(麟角寺) excavation research. Roof-end tile with arabesque design(唐草文平瓦當) etc. including roof-end tile with lotus design(蓮花文圓瓦當) are judged to be the tile frame produced by the same frame of roof-end tile that was excavated in Gyeongju, Wolseong(月城) and Hwangyongsa Temple(皇龍寺址). There are three kinds of cases concerning the transportation of tile manufacture ; the roof-end tile manufactured in Gyeongju directly moved to each region, only tile frame moved to site to be manufactured there, and tile manufacturer moved to site to manufacture there. This article considers the case of the roof-end tile manufactured in Gyeongju that was directly moved to each region. In case of the Silla tiles excavated in region especially Ingaksa Temple, the aspects of tiles in accordance with different era show the repeated coexistence, expansion and maintenance. This situation is significant as a clue to understand the supply from Gyeongju not as temporary, but as continuous. On the other hand, if the Gyeongju tiles flowed directly into each region, and if the road was built of gravels and the means of transportation was cart, the damage from movement must never be prevented. On the contrary, transportation through waterway might be advantageous due to the reduction of labor and damage rate and the easiness of loading. Accordingly, it tells us why the ruins where roof-end tiles were excavated located near big and small rivers or streams. Of course there are some ruins located in a fixed distance, but the distance may be enough to endure the impact put on tiles from the overland movement. Therefore, in case of direct inflow form long distance, transportation must be finished by overland movement after waterway movement.

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A (역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.262-279
    • /
    • 2019
  • In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

Invigorating Makerspaces in Korea: Empirical Analysis on Operating Components of Makerspaces (한국형 메이커스페이스 활성화를 위한 운영요소 분석 연구)

  • Kwon, Hyeog-In;Kim, Ju-Ho
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.14 no.2
    • /
    • pp.105-118
    • /
    • 2019
  • New manufactural innovation was generated with combination with Do It Yourself(DIY) culture and Information and Communication Technology(ICT). It led people to make their creative idea in real things and share them. This social movement has been called as 'Maker' culture. As maker culture was developed, the places named 'Makerspace' with high-tech equipment and sharing environment have been widely spread and gotten spotlight. Futhermore, makerspaces have been diffused rapidly in Korea; because of its importance for the fourth industrial revolution. However, the operation of makerspaces is not matured as much as its popularity, so problems occurred in operating aspects. The number of related studies is not enough to foster domestic maker culture in Korea. Of that, studies on operation of makerspaces were limited and the quantity of survey sample was insufficient. Therefore, firstly, in this study, operation elements of makerspaces were extracted by literature review. And, survey for examining the extracted elements was conducted to four policy makers and researchers, four makerspace operators and four makers. Final survey was carried out by Importance-Performance Analysis(IPA) method to fifty recipients composed of policy makers and researchers, operators, and makers. In result, importance located above performance in every elements and in-depth interview was followed to understand domestic surroundings and suggest way to invigorate makerspaces in Korea. The suggestion shows as follows. First, online and offline platform for makers should be expanded; second, makerspace should connect private sponsorship with makers or their projects; third, policy direction has to be improved from venturing business to diffusion of maker culture; fourth, basic maker education should be enlarged.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Evaluating Chloride Absorption of Reinforced Concrete Structures with Crack Widths (균열 폭에 따른 콘크리트 구조물에서의 염화물 흡수 평가)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Jaehwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.10-16
    • /
    • 2020
  • Deterioration of reinforced concrete structure caused by chloride ingress is the main issue and regrading this, many studies have been investigated with both experiments and computational modelling. In addition to chloride diffusion, chloride sorption should be considered as a chloride transport mechanism in concrete structure and cracks formed in concrete structures are the main variable to evaluate the performance of the structures. In this study, after making two types of cracks width (0.1 and 0.3 mm) in reinforced concretes, chloride absorption tests were performed. Weight change and colour change using 0.1 AgNO3 solution from the samples were performed to measure chloride ingress. Image processing was also carried out to quantify range of colour change in carck face. From the result, it were confirmed that the amount of chloride absorption increases with exposure time and increasing crack width, and chlorides reached at steel depth within 1 hour. It would be possible that chloride can move through interface bewteen steel and concrete, thereby further study regarding this is required.

A Study on the Activities of Five Natural Plant Essential Oils on Atopic Dermatitis (자생식물 Essential Oil 5 종의 항 아토피피부염 활성 연구)

  • Jeong, Jeong-Hwa;Nguyen, Thao Kim Nu;Choi, Min-Jin;Nguyen, Ly Thi Huong;Shin, Heung-Mook;Lee, Byung-Wook;Yang, In-Jun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • This study is an experiment to evaluate the anti-atopy efficacy of five kinds of natural plant essential oils; Artemisia annua L. (AA), Citrus junos Sieb. ex TANAKA (CJ), Chrysanthemum boreale Makino (CB), Pinus koraiensis (PK), and Pinus densiflora for. erecta (PD). Through Agar diffusion test, five species of native plant essential oils were treated in a total of four strains, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. In order to invest the anti-inflammatory effect, five kinds of natural plant essential oils were treated in HaCaT cells-induced by TNF-α and IFN-γ (TI). AA, CJ, CB, PK and PD showed antibacterial effects on Candida albicans at a concentration of 10 mg/mL. We also found that the thymus and activation-regulated chemokine (TARC) expression was suppressed in 0.1 ㎍/mL of PK, 1 ㎍/mL of AA, CB, and PK. macrophage-derived chemokine (MDC) expression was suppressed in 1 ㎍/mL of AA and PK. IL-6 expression was suppressed in 0.1, 1 ㎍/mL of AA, PK in HaCaT cells. Hence it suggests that AA, CB, and PK have the anti-inflammatory effects, and it could contribute to atopic dermatitis relief by reducing the infiltration of immune cells to inflamed area.

The Evaluation of Durability Performance in Mortar Curbs Containing Activated Hwangtoh (활성 황토를 혼입한 모르타르 기반 경계석의 내구성능 평가)

  • Kwon, Seung-Jun;Kim, Hyeok-Jung;Yoon, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.520-527
    • /
    • 2020
  • Hwangtoh is the rich resource that accounts for about 15.0% of the domestic soil, and can be used as the admixture of concrete with Pozzolan characteristics if activated by rapidly freezing after burning with high temperature. In this study, the mortar curbs containing active hwangtoh were produced, based on the mixture for the mortar curbs sold on the market. The substitution rate of active hwangtoh were considered 10.0% and 25.0%, and the test items were selected to compressive and flexural strength tests, freezing/thawing resistance tests, accelerated carbonation tests, and accelerated chloride diffusion tests. In the results of the mechanical performance, it was showed that the highest strength was evaluated in OPC mixture, and the increase in strength was small by the increase of age, which was believed to be due to the fact that most of the strength in each mixture was created in three days of steam curing. The results of the freezing/thawing tests for 28 aged days showed the reduction rate of compressive strength was 85.0% or higher for all specimen, meeting the criteria presented. The accelerated carbonation tests were carried out on the specimen at 28 days of age, and the results showed that the mortar with active hwangtoh had lower carbonation resistance performance than mortar with OPC. The passed charge of each mixture was assessed in accordance with ASTM C 1202 on 28 and 91 aged days. The OPC mixture had "Low" rate and the mortar with active hwangtoh had "Moderate" rate. So it was thought that the mortar with active hwangtoh had appropriate resistance performance for chloride attack.

Numerical analysis study on the concentration change at hydrogen gas release in semi-closed space (수치해석을 통한 반밀폐공간 내 수소가스 누출 시 농도변화에 관한 연구)

  • Baek, Doo-San;Kim, Hyo-Gyu;Park, Jin-Yuk;Yoo, Yong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • Hydrogen in hydrogen-electric vehicles has a wide range of combustion and explosion ranges, and is a combustible gas with a very fast flame propagation speed, so it has the risk of leakage, diffusion, ignition, and explosion. The fuel tank has a Thermally active Pressure Relief Device (TPRD) to reduce the risk of explosion and other explosions, and in the event of an accident, hydrogen inside the tank is released outside before an explosion or fire occurs. However, if an accident occurs in a semi-closed space such as an underground parking lot, the flow of air flow is smaller than the open space, which can cause the concentration of hydrogen gas emitted from the TPRD to accumulate above the explosion limit. Therefore, in this study, the leakage rate and concentration of hydrogen over time were analyzed according to the diameter of the nozzle of the TPRD. The diameter of the nozzle was considered to be 1 mm, 2.5 mm and 5 mm, and ccording to the diameter of the nozzle, the concentration of hydrogen in the underground parking lot increases in a faster time with the diameter of the nozzle, and the maximum value is also analyzed to be larger with the diameter of the nozzle. In underground parking lots where air currents are stagnant, hydrogen concentrations above LFL (Lowe Flammability Limit) were analyzed to be distributed around the nozzle, and it was analyzed that they did not exceed UFL (Upper Flammability Limit).

Selective Catalytic Reduction (SCR) of NOx with NH3 on Sb-promoted VWTi Catalysts (Sb 첨가에 따른 VWTi 촉매의 암모니아 선택적 촉매 환원(SCR)을 통한 질소산화물 저감)

  • Kim, Su Bin;Choi, Gyeong Ryun;Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.35-41
    • /
    • 2021
  • VWTi, which is used as a commercial catalyst in NH3-SCR, exhibits excellent denitrification performance at 300 to 400 ℃, but there is a problem that efficiency decreases at low temperatures below 300 ℃. Research on catalysts containing promoter to increase low-temperature denitrification efficiency is steadily progressing. However, research on the cause of the improvement in low-temperature denitrification efficiency of the catalyst and the catalyst properties is insufficient. In this study, it was confirmed that by adding Sb to VWTi, denitrification performance was improved by more than 10% in NH3-SCR reaction below 300 ℃. At this time, the space velocity and the size of the catalyst particles were controlled to exclude the influence of external/internal diffusion. In addition, the catalytic properties according to the presence or absence of Sb were investigated by performing BET, TEM/EDS, O2-TPD, H2-TPR and DRIFTs analysis. It was judged that the addition of Sb increased the adsorbed oxygen species on the surface of the catalyst, thereby enhancing the redox properties of the catalyst at low temperature and exhibiting excellent denitrification performance.