DOI QR코드

DOI QR Code

Evaluating Chloride Absorption of Reinforced Concrete Structures with Crack Widths

균열 폭에 따른 콘크리트 구조물에서의 염화물 흡수 평가

  • 김건수 (한국건설기술연구원 노후인프라센터) ;
  • 박기태 (한국건설기술연구원 노후인프라센터) ;
  • 김재환 (한국건설기술연구원 노후인프라센터)
  • Received : 2020.08.13
  • Accepted : 2020.10.29
  • Published : 2020.12.31

Abstract

Deterioration of reinforced concrete structure caused by chloride ingress is the main issue and regrading this, many studies have been investigated with both experiments and computational modelling. In addition to chloride diffusion, chloride sorption should be considered as a chloride transport mechanism in concrete structure and cracks formed in concrete structures are the main variable to evaluate the performance of the structures. In this study, after making two types of cracks width (0.1 and 0.3 mm) in reinforced concretes, chloride absorption tests were performed. Weight change and colour change using 0.1 AgNO3 solution from the samples were performed to measure chloride ingress. Image processing was also carried out to quantify range of colour change in carck face. From the result, it were confirmed that the amount of chloride absorption increases with exposure time and increasing crack width, and chlorides reached at steel depth within 1 hour. It would be possible that chloride can move through interface bewteen steel and concrete, thereby further study regarding this is required.

철근 콘크리트 구조물에서의 염화물 침투에 따른 구조물의 열화는 주요한 문제로 이와 관련하여 현재까지 많은 연구들이 수행되고 있다. 콘크리트 구조물의 염화물 침투에 있어서 염화물 확산 이외에도 염화물 흡수에 의한 침투도 고려되어야 하며, 구조물의 사용기간 중에 발생되는 균열은 염화물 침투의 주 경로가 될 수 있기 때문에 이러한 변수들이 구조물의 내구성능 평가에 고려되어야 한다. 본 연구에서는 철근 콘크리트에 두 가지 균열 폭 (0.1 mm, 0.3 mm)을 발생 시킨 후, 염화물 흡수 실험을 실시하였다. 염화물 흡수 실험으로부터 흡수에 따른 무게 변화와 AgNO3 용액을 이용한 변색법으로 균열면에서의 염화물 침투 정도를 확인하였다. 변색 범위를 이용한 이미지 분석 또한 실시하였다. 흡수 시간 및 균열 폭이 증가하면 염화물 흡수량이 증가하는 것을 확인 하였다. 모든 균열 폭에서 1 시간 이내에 염화물이 철근 깊이까지 도달하였다. 또한 철근 계면을 통한 염화물 이동 가능성을 확인하였으며, 이는 철근 부식의 주요한 원인으로 작용할 수 있어 추가적인 실험을 통한 검증이 필요할 것으로 판단된다.

Keywords

References

  1. ACI Committee 318 (2014) Building code requirements for structural concrete (ACI 318-14) and commentary on building code requirements for structural concrete (ACI 318R-14), American Concrete Institute, USA.
  2. Alaswad, G., Suryanto, B., & McCarter, W.J. (2018) Moisture movement within concrete exposed to simulated hot arid/semi-arid conditions, Proceedings of the Institution of Civil Engineers - Construction Materials, 171(8), 1-15.
  3. Angst, U.M., Hooton, R.D., Marchand, J., Page, C.L., Flatt, R.J., Elsener, B., Gehlen, C., Culikers, J., Present and future durability challengens for reinforced concrete structures, Materials and Corrosion, 63(12), 1047-1051. https://doi.org/10.1002/maco.201206898
  4. Belleghem, B.V., Montoay, R., Dewankele, J., Van den Steen, N., De Graeve, I., J. Deconinck, Cnudde, V., Van Tittelboom, K., & De Belie, N. (2016) Capillary water absorption in cracked and uncracked mortar - A comparision between experimental study and finite element analysis, Construction and Building Materials, 110(5), 154-162. https://doi.org/10.1016/j.conbuildmat.2016.02.027
  5. British Standards Institution (2016) BS EN 206:2013+A1:2016 Concrete-Specification, Performance, Production and Conformity; British Standards Institution.
  6. Broomfield, J.P. (1997) Corrosion of steel in concrete: Understanding, investigation and repair, E&FN Spon, London.
  7. Chung, J. S., Kim, B. H., & Kim, I. S. (2014) A case study on chloride corrosion for the end zone of concrete deck subjected to de-icing salts added calcium chloride, Journal of the Korean Society of Safety, 29(6), 87-93. https://doi.org/10.14346/JKOSOS.2014.29.6.087
  8. Japan Socierty of Civil Engineers (2010) Standard specifications for concrete structures-2007 'Design', Japan Society of Civil Engineers, Japan.
  9. Jones, A.E.K., March, B., Clark, L., Seymour, D., Basheer, P., Long, A., (1997) BCA Research Report C/21, Dvelopment of a holistic approach to ensure the durability of new concrete construction, British Cement Association, UK.
  10. Kim, J. H., Jeong, J. Y., Jang, S. Y., Jeong, S. H., & Kim, S. I. (2015) Strength devleopment and durability of high-strength high-volume GGBFS concrete, Journal of the Korean Recycled Construction Resources Institute, 3(3), 261-267. https://doi.org/10.14190/JRCR.2015.3.3.261
  11. Nguyen, P.T. & Amiri, O. (2014) Study of electrical double layer effect on chloride transport in unsaturated concrete, Construction and Building Materials, 50(1), 492-498. https://doi.org/10.1016/j.conbuildmat.2013.09.013
  12. NORDTEST (1999) NT BUILD 492: Concrete, mortar and cement-based repair materials: Chloride migration coefficient from non-steady-state migration experiments, NORDTEST.
  13. Streicher, P.E., and Alexander, M.G. (1995) A chloride conduction test for concrete, Cement and Concrete Research, 25(6), 1284-1294. https://doi.org/10.1016/0008-8846(95)00121-R
  14. Wang, J., Basheer, P.A.M., Nanukuttan, S.V., Long, A.E., & Bay, Y. (2016) Influence of service loading and the resulting micro-cracks on chloride resistance of concrete, Construction and Building Materials, 108(4), 55-66.
  15. Yang, E.I., Jin, S.H., Kim, M.Y., Choi, Y.S., & Han, S.H. (2011) Effect of inisital flexural crck on resistance to chloride penetration into reinforced concrete members, Journal of the Korea Institute for Structural Maintenance and Inspection, 15(2), 79-87. https://doi.org/10.11112/JKSMI.2011.15.2.079
  16. Yoon, Y.S., & Kwon, S.J. (2019) Evaluation of apparent chloride diffusion coefficient and surface chloride contents of FA concrete exposed splash zone considering crack width, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(6), 18-25.