• Title/Summary/Keyword: ISO Tank

Search Result 26, Processing Time 0.023 seconds

Comparative analysis of strain according to two wavelengths of light source and constant temperature bath deposition in ultraviolet-curing resin for dental three-dimensional printing (치과 3D 프린팅용 자외선 경화 레진에 광원의 두 가지 파장에 따른 경화 및 항온수조 침적에 따른 변형률의 비교 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young;Kang, Hoo-Won;Yang, Cheon-Seung
    • Journal of Technologic Dentistry
    • /
    • v.42 no.3
    • /
    • pp.208-212
    • /
    • 2020
  • Purpose: This study aimed to analyze the shrinkage and expansion strain of ultraviolet (UV)-cured resin according to the wavelength of the light source and compare the shrinkage and expansion. Methods: We prepared the mold with according to the ISO 4049 specimen. The size of the circle in the mold was prepared with a height of 6.02 mm and a diameter of 4 mm. UV-curable resin for three-dimensional (3D) printing was injected into the circular mold. The control group was irradiated with a wavelength of 400~405 nm using UV-curing equipment (400 group), and the experimental group was irradiated with a wavelength of 460~465 nm (460 group). Both groups were produced ten specimens. The produced specimen was first measured with a digital micrometer. After the first measurement, the specimen was immersed in a constant temperature water bath for 15 days, after which the second measurement was performed, and the third measurement was taken after 30 days. The measured values were analyzed using the independent sample t-test (α=0.05). Results: In the non-immersion water tank, the contraction was 0.9% in the 400 group and 1.3% in the 460 group. In the constant temperature bath, the expansion was high at -0.4% in the 400 group for 15 days, and the smallest expansion was -0.03% for the 400 group for 30 days. There were significant differences between the two groups (p<0.05). Conclusion: The 400 group had a lower UV resin specimen strain than the 460 group. Therefore, it is recommended to use the wavelength required by the UV-curing resin.

Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line (경계조건변화에 따른 동력전달관로의 동특성)

  • 나기대;유영태;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

Comparison of Methanol with Formamide on Extraction of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction (모델 콜타르 유분 중에 함유된 질소고리화합물의 추출에 관한 메탄올과 포름아마이드의 비교)

  • Kim, Su Jin
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.234-238
    • /
    • 2015
  • The separation of nitrogen heterocyclic compound (NHC) contained in a model coal tar fraction was compared by the methanol and formamide extraction. The model coal tar fraction comprising four kinds of NHC (NHCs : quinoline, iso-quinoline, indole, quinaldine) and three kinds of bicyclic aromatic compound (BACs : 1-methylnaphthalene, 2-methylnaphthalene, dimethylnaphthalene), biphenyl and phenyl ether was used as a raw material. The aqueous solution of methanol and formamide were used as solvents. A batch-stirred tank was used as the raw material - a solvent contact unit of this work. Independent of the solvent used, the distribution coefficient of NHCs sharply increased by decreasing the initial volume ratio of water to the solvent and increasing the equilibrium operation temperature, whereas, the selectivity of NHCs in reference to BACs decreased. Decreasing the initial volume ratio of solvent to feed resulted in deteriorating distribution coefficients, but the selectivity of NHCs in reference to BAC was almost the constant. The distribution coefficient of NHCs by the methanol extraction was 3~5 times higher than that of NHCs by the formamide extraction, inversely, the selectivity of NHCs based on BACs by the formamide extraction was 3~7 times higher than that of NHCs by the methanol extraction. Furthermore, two different solvent extraction methods by adding the extraction processing speed to the balance between solvency and selectivity of NHCs were compared.

Influence of the Type of Curing Agent on Swelling Behavior of Natural Rubber Foam (가교제의 종류가 천연고무 발포체의 팽윤거동에 미치는 효과)

  • Lee, Hwan-Kwang;Chung, Tea-Kyung;Kim, Sung-Chan;Kim, Hyun-Gi;Choi, Kyung-Man;Kim, Young-Min;Han, Dong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1775-1781
    • /
    • 2008
  • The effects of the type of curing agent on the swelling of the natural rubber(NR) sponge applicable to the self-sealing layer of a helicopter fuel tank were investigated. The curing systems employed were peroxide and mixed ones of sulfur and peroxide. The NR compounds were prepared in a kneader and a roll-mill. The compounds were partially cured in a press at high pressure and subsequently cured fully with expansion in another press at atmospheric pressure. The apparent density of the NR sponge was measured and the cell structure was observed with scanning electron microscopy. The swelling experiments were performed at room temperature using toluene, iso-octane, and an aircraft fuel as a solvent. More rapid volume swelling of the NR sponge cured by peroxide was achieved than cured by sulfur and peroxide with similar amount of curing agent added in rubber compounds. The apparent density and cell structure of the sponge were extremely sensitive to the amount of peroxide, which influences again the swelling behavior of the NR sponge. It is important to control properly two reactions of decomposition of foaming agent and crosslinking of NR in the mold to obtain rapid swelling of the NR sponge on contact of the fuel.

Surfactant Enhanced In-Situ Soil Flushing Pilot Test for the Soil and Groundwater Remediation in an Oil Contaminated Site (계면활성제 원위치 토양 세정법을 이용한 유류 오염 지역 토양.지하수 정화 실증 시험)

  • 이민희;정상용;최상일;강동환;김민철
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.4
    • /
    • pp.77-86
    • /
    • 2002
  • Surfactant enhanced in-situ soil flushing was performed to remediate the soil and groundwater at an oil contaminated site, where had been used as a military vehicle repair area for 40 years. A section from the contaminated site (4.5 m $\times$ 4.5 m $\times$ 6.0 m) was selected for the research, which was composed of heterogeneous sandy and silt-sandy soils with average $K_d$ of 2.0$\times$$10^{-4}$cm/sec. Two percent of sorbitan monooleate (POE 20) and 0.07% of iso-prophyl alcohol were mixed for the surfactant solution and 3 pore volumes of surfactant solution were injected to remove oil from the contaminated section. Four injection wells and two extraction wells were built in the section to flush surfactant solution. Water samples taken from extraction wells and the storage tank were analyzed on a gas-chromatography (GC) for TPH concentration in the effluent with different time. Five pore volumes of solution were extracted while TPH concentration in soil and groundwater at the section were below the Waste Water Discharge Limit (WWDL). The effluent TPH concentration from wells with only water flushing was below 10 ppm. However, the effluent concentration using surfactant solution flushing increased to 1751 ppm, which was more than 170 times compared with the concentration with only water flushing. Total 18.5 kg of oil (TPH) was removed from the soil and groundwater at the section. The concentration of heavy metals in the effluent solution also increased with the increase of TPH concentration, suggesting that the surfactant enhanced in-situ flushing be available to remove not only oil but heavy metals from contaminated sites. The removal efficiency of surfactant enhanced in-situ flushing was investigated at the real contaminated site in Korea. Results suggest that in-situ soil flushing could be a successful process to remediate contaminated sites distributed in Korea.

Flexural Properties according to Change of Polymerization Temperature of Autopolymerized Resin for Orthodontic (치과 교정용 자가중합형 Resin의 중합 온도 변화에 따른 굽힘 특성)

  • Lee, Gyu Sun
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.259-264
    • /
    • 2015
  • For this experiment, specimen was manufactured by injecting polymer and monomer into silicon mold with volume ratio of 2.5:1 based on ISO 20795-2 so that average thickness, width and length of specimen would be maintained as 3.3 mm, 10.0 mm and 65.0 mm, respectively depending on spray on technique. Specimen was divided into 3 groups ($25^{\circ}C$, $40^{\circ}C$, $70^{\circ}C$) depending on polymerization temperature and 10 specimen was manufactured for each group and it was polymerized in water tank of ${\pm}1^{\circ}C$ under the setting condition of polymerization time of 15 minutes and pressure of 3 bar. After keeping specimen in distilled water of $37^{\circ}C$ for over 48 hours before experiment, flexural strength (FS) and elasticity modulus (EM) of specimen being tested by using Intron (3344; Instron; Instron). SPSS ver. 16.0 was used for analysis and post-hoc test of Scheffe was performed after using one-way ANOVA. When comparing mean value of FS of resin for orthodontics, it was represented in the range of 71.500 MPa for $25^{\circ}C$ group, 74.920 MPa for $40^{\circ}C$ group and 76.880 MPa for $70^{\circ}C$ group and difference was shown in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group but such difference was not significant statistically (p=0.052). Result of EM mean value of resin for orthodontics was more polymerization temperature was high, the more was significant difference represented in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group (p<0.039).