• Title/Summary/Keyword: ISO/IEEE 11073 Personal health data

Search Result 11, Processing Time 0.02 seconds

Complexity Analysis for Implementation of the ISO/IEEE 11073 PHD Standards (ISO/IEEE 11073 PHD 표준 구현을 통한 복잡도 분석)

  • Kim, Sang-Kon;Yoo, Done-Sik;Kim, Tae-Kon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4C
    • /
    • pp.307-312
    • /
    • 2012
  • In this paper, we perform a complexity analysis for implementation of the ISO/IEEE 11073 Personal Health Device (PHD) standards in order to check the required system resources when ISO/IEEE 11073 PHD standards are implemented on the embedded system. Base on the implemented programs complying the PHD standards for a weighing scale, a blood pressure monitor, and a glucose meter among the various personal health devices, we make a pseudo-code. And then from the two different points of view such as program memory space and data memory space, we make a complexity analysis model. Because system resources or capability are strongly restricted in the personal health devices, our research work is very useful to estimate the required system resources.

Implementation of ISO/IEEE 11073-10404 Monitoring System Based on U-Health Service (유헬스 서비스 기반의 ISO/IEEE 11073-10404 모니터링 시스템 구현)

  • Kim, Kyoung-Mok
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.6
    • /
    • pp.625-632
    • /
    • 2014
  • The u-health service is using portable device such as smart device and it consists of small computing device. The u-health service carry out same performance with desktop computer. We designed message structure based on Bluetooth HDP. This message structure is used to transmit patient's biometric data on the smart device of medical team, patient and family over the mobile network environment. ISO/IEEE 11073 PHD standard was defined based on the method of communication between the agent and the manager. And We are confirmed the reliable transmission of biometric data at the smart device by implementing the android OS based patient information monitoring application to check the status of patient for medical team, patient and family.

Complexity Analysis for Implementation of the PM-store of ISO/IEEE 11073 PHD Standards (ISO/IEEE 11073 개인건강기기 표준의 PM-store 구현을 위한 복잡도 분석)

  • Kim, Sang-kon;Lee, Chang-ki;Kim, Tae-kon;Hwang, Hee-joung
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.447-454
    • /
    • 2015
  • In this paper, the complexity analysis for implementation of the PM-store is performed in terms of the number of instruction cycles which is executed by CPU in a personal health device(PHD) in order to transfer the large amount of the periodically generated measurement data using the PM-store concept defined in ISO/IEEE 11073 PHD standards. We propose an analytic model that is focused on the number of instruction cycles executed by CPU depending on the PM-store hierarchy.

A Novel Transmission Scheme for Compressed Health Data Using ISO/IEEE11073-20601

  • Kim, Sang-Kon;Kim, Tae-Kon;Lee, Hyungkeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5855-5877
    • /
    • 2017
  • In view of personal health and disease management based on cost effective healthcare services, there is a growing need for real-time monitoring services. The electrocardiogram (ECG) signal is one of the most important of health information and real-time monitoring of the ECG can provide an efficient way to cope with emergency situations, as well as assist in everyday health care. In this system, it is essential to continuously collect and transmit large amount of ECG data within a given time and provide maximum user convenience at the same time. When considering limited wireless capacity and unstable channel conditions, appropriate signal processing and transmission techniques such as compression are required. However, ISO/IEEE 11073 standards for interoperability between personal health devices cannot properly support compressed data transmission. Therefore, in the present study, the problems for handling compressed data are specified and new extended agent and manager are proposed to address the problems while maintaining compatibility with existing devices. Extended devices have two PM-stores enabling compression and a novel transmission scheme. A variety of compression techniques can be applied; in this paper, discrete cosine transformation (DCT) is used. And the priority of information after DCT compression enables new transmission techniques for performance improvement. The performance of the compressed signal and the original uncompressed signal transmitted over the noisy channel are compared in terms of percent root mean square difference (PRD) using our simulation results. Our transmission scheme shows a better performance and complies with 11073 standards.

Energy Efficient Wireless Data Transmission for Personal Health Devices

  • Kim, Sang-Kon;Kim, Tae-Kon;Koh, Jin-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1559-1570
    • /
    • 2013
  • The family of ISO/IEEE11073 standards is the basis of the e-health system and provides interoperability for personal health devices. In the early stage of e-health business, it was expected that people would use a health device individually. In this case, a measurement datum was episodically acquired and generally transmitted for one person at a time. Recently, a health device is expected to be used by multiple people, and large amounts of measurement data are gathered in a short time interval. In addition, mobile health devices have become more popular, so that energy efficient measurement data transmission is required, to prolong the use of a device. In IEEE11073 PHD standards, data transmission is classified into three different types: immediate individual transfer, small block transfer, and large block transfer. The large block transfer using PM-store concept provides efficient transmission. However, an existing PM-store has problem when a device is used by multiple people. To address the defined problem, a modified PM-segment that is in compliance with 11073 standards is proposed in this paper. In particular, the proposed PM-segment is designed to minimize the additional complexity of an agent instead of a manager and it is interoperable with the existing manager. The proposed PM-segment shows better performance than the existing PM-segment, in terms of memory requirements and expected queue time. Also, performance comparison among the three transfers is performed in regard to the delay time and communication power consumption points of view.

u-Healthcare Monitoring System Design using by Smartphone based on Bluetooth Health Device Profile (Bluetooth Health Device Profile기반 스마트폰을 이용한 u-Healthcare 모니터링 시스템 설계)

  • Cho, Kyoung-Lae;Kim, Sang-Yoon;Kim, Jung-Han;Oh, Am-Suk;Kim, Gwan-Hyung;Jean, Jae-Hwan;Kang, Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1365-1369
    • /
    • 2013
  • Recently, the Personal Health Device(PHD) that measures various biometric data easily are highlighted for ensuring portability, scalability and interoperability among the device as well as needs for a standardization of managing information measured by. In this paper, we'd like to propose u-healthcare monitoring system that measure biometric data(Oxygen saturation, Body weight, ECG and Blood pressure) by PHD featured with transferring data into devices such as smartphone using Bluetooth Health Device Profile(HDP) based on the ISO/IEEE 11073.

Design and Implementation of ISO/IEEE 11073 DIM Transmission Structure Based on oneM2M for IoT Healthcare Service (사물인터넷 헬스케어 서비스를 위한 oneM2M기반 ISO/IEEE 11073 DIM 전송 구조 설계 및 구현)

  • Kim, Hyun Su;Chun, Seung Man;Chung, Yun Seok;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.3-11
    • /
    • 2016
  • In the environment of Internet of Things (IoT), IoT devices are limited by physical components such as power supply and memory, and also limited to their network performance in bandwidth, wireless channel, throughput, payload, etc. Despite these limitations, resources of IoT devices are shared with other IoT devices. Especially, remote management of the information of devices and patients are very important for the IoT healthcare service, moreover, providing the interoperability between the healthcare device and healthcare platform is essential. To meet these requirements, format of the message and the expressions for the data information and data transmission need to comply with suitable international standards for the IoT environment. However, the ISO/IEEE 11073 PHD (Personal Healthcare Device) standards, the existing international standards for the transmission of health informatics, does not consider the IoT environment, and therefore it is difficult to be applied for the IoT healthcare service. For this matter, we have designed and implemented the IoT healthcare system by applying the oneM2M, standards for the Internet of Things, and ISO/IEEE 11073 DIM (Domain Information Model), standards for the transmission of health informatics. For the implementation, the OM2M platform, which is based on the oneM2M standards, has been used. To evaluate the efficiency of transfer syntaxes between the healthcare device and OM2M platform, we have implemented comparative performance evaluation between HTTP and CoAP, and also between XML and JSON by comparing the packet size and number of packets in one transaction.

A Research and development of healthcare gateway for international standards that support a WiBro / WiMAX (WiBro/WiMAX 지원 국제표준 헬스케어 게이트웨이 연구 개발)

  • Lee, Jeong-Gi;Kim, Kuk-Se;Kim, Choong-Won;Ahn, Seong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3020-3028
    • /
    • 2014
  • In the present study, A protocol gateway between agent is designed by using an optimized protocol for the exchange of ISO / IEEE 11073-20601 in order to compensate the disadvantage of the existing gateway and a international standard healthcare set-top. The gate way was designed to smooth data transmission to overcoming the geographical limits of the service and to enable data transfer on emergency vehicle and the mountain area.

Design of an $SpO_2$ Transmission Agent based on ISO/IEEE 11073 Standard Protocol (ISO/IEEE 11073 표준 프로토콜 기반의 산소포화도 전송 에이전트 설계)

  • Pak, Ju-Geon;Im, Sung-Hyun;Park, Kee-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.462-465
    • /
    • 2011
  • A pulse oximeter is a device which provides non-invasive estimate of percentage oxygen saturation of haemoglobin (SpO2). Due to the limitations of resources of personal health devices (PHDs) including pulse oximeters, they generally transmit the estimated data to a remote monitoring server through a close manager (e.g. mobile device or PC). Therefore, communication protocols between PHDs and a manager is an important research topic in terms of interoperability. In this paper, we present design results of an SpO2 transmission agent based on the ISO/IEEE 11073 (X73) protocol. The protocol is an international standard for PHDs. The agent is an embedded program which generates X73 messages from the estimated pulse rates and SpO2, and transmits the messages to a close manager. The agent consists of a Session, Message and Memory Handler. The Session Handler manages a communication session with the manager, and the Message Handler generates and analyzes the exchanged messages according to the X73 protocol. The Memory Handler extracts pulse rates and SpO2s which are stored in a memory of the pulse oximeter. The SpO2 transmission agent allows pulse oximeters to communicate with managers based on x73 standard. Consequently, the interoperability between the pulse oximeters and the managers is guaranteed.

  • PDF

Improvement of Wireless Connectivity and Efficiency in E-Healthcare Service System Using a Proxy in Body Area Device

  • Kim, Sang Kon;Kim, Tae Kon;Koh, Jinhwan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.991-1013
    • /
    • 2020
  • E-health services have provided interoperability between personal health devices in personal area network, based the ISO/IEEE 11073 standard. In the healthcare system, the manager handles most agents concurrently through wireless communication. However, due to the distance limitation and the increased number of agents, it may be difficult to provide continuous connectivity. Recently, body area devices have been equipped with various applicable agents, which can even handle agents on behalf of the manager. A BAD may act as an intermediary device to increase system efficiency and performance. In this study, a device called "proxy", which can be installed as software on BAD devices, is proposed. The data measured by an agent can be sent to the proxy first, and subsequently be sent to the manager again. Agents and the manager are not aware of the proxy existence and work normally without the proxy. Furthermore, a new smart proxy and modified manager are proposed. The smart proxy acts as one agent handling measurement data from several agents, which can transmit a significant amount of data at once. The proxy and smart proxy maintain compatibility with existing devices that conform to the 20601 standard. The proposed schemes are verified and the complexities of devices are analyzed. The analysis shows no significant difference among the proxy, smart proxy, and manager. Simulations exhibit that the proposed schemes can improve the system performance.