• Title/Summary/Keyword: ISI Channel

Search Result 257, Processing Time 0.021 seconds

A Performance Comparison of VSCA and VSDA Adaptive Equalization Algorithm using Distance Adjusted Approach in QAM Signal (QAM 신호에서 Distance Adjusted Approach를 이용한 VSCA와 VSDA 적응 등화 알고리즘의 성능 비교)

  • Lim, Seung Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.139-145
    • /
    • 2015
  • This paper compare the VSCA (Variable stepsize Square Contour Algorithm) and VSDA (Variable stepsize Square contour Decision directed Algorithm) adaptive equalization algorithm that is used for the minimization of the intersymbol interference which occurs in the time dispersive channel for the transmission of 16-QAM signal.. In the SCA, it is possible to compensates the amplitude and phase in the received signal that are mixed with the intersymbol interference by the constellatin dependent constant by using the 2nd order statistics of the transmitted signal. But in the VSCA and VSDA, it is possible to the improving the equalization performance by varing the stepsize using the concept of distance adjusted approach for constellation matching. We compare the performance of the VSCA and VSDA algorithm by the computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion and MSE were used in the performace index. As a result of computer simulation, the VSCA algorithm has better than the VSDA in every performance index.

Multi-Constant Modulus Algorithm for Blind Decision Feedback Equalizer (블라인드 결정 궤환 등화기를 위한 다중 계수 알고리즘)

  • Kim, Jung-Su;Chong, Jong-Wha
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.709-717
    • /
    • 2002
  • A new multi constant modulus algorithm (MCMA) for a blind decision feedback equalizer is proposed. In order to avoid the error propagation problem in the conventional DFE structure, Feed-Back Filter coefficients are updated only after Feed-Forward Filter coefficients are sufficiently converged to the steady state. Therefore, it has the problem of slow convergence speed characteristics. To overcome this drawback, the proposed MCMA algorithm uses not only new cost function considering the minimum distance between the received signal and the representative value containing the statistical characteristics of the transmitted signal, but also adaptive step-size according to the equalizer outputs to fast convergence speed of FBF. Simulations were carried out under the certified communication channel environment to evaluate a performance of the proposed equalizer. The simulation results show that the proposed equalizer has an improved convergence and SER performance compared with previous methods. The proposed techniques offer the possibility of practical equalization for cable modem and terrestrial HDTV broadcast (using 8-VSB or 64-QAM) applications.

Self-Interference Cancellation and Turbo Equalizer Design for the Single-band Full Duplex System using Single Antenna (단일 안테나를 사용하는 단일대역 전이중 통신을 위한 자기간섭신호제거와 터보 등화기 설계)

  • Choi, Jinkyu;An, Changyoung;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.2
    • /
    • pp.7-17
    • /
    • 2015
  • In this paper, we propose a single antenna SSD(simultaneous single band duplex) system using turbo equalizer. The proposed system communicates simultaneously on single band. That is the proposed system is full-duplex system. The proposed system uses balanced feed network circuit to improve isolation in single antenna structure. Also, the proposed system uses RF(radio frequency) cancellation and digital cancellation to cancel self-interference. Additionally, the proposed system uses turbo equalizer to equalize ISI(inter-symbol interference) by harsh multipath fading and to collect bit errors by residual self-interference signals. By using turbo equalizer, the proposed system guarantees QoS(quality of service). In this paper, we uses Simulink simulation program to analyze performance of the proposed system. The simulation results confirm that proposed system can communicate simultaneously by using balanced feed network, RF cancellation, digital cancellation and turbo equalizer in harsh multipath channel on single band.

A Study on the Underwater Acoustic Communication with Direct Sequence Spread Spectrum (직접 수열 대역확산 방식을 이용한 수중음향통신 연구)

  • Han, Jeong-Woo;Kim, Ki-Man;Son, Yoon-Jun
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.643-647
    • /
    • 2011
  • In this paper, we study the application of DSSS(Direct Sequence Spread Spectrum) in underwater acoustic communication for robust the ISI(Inter-Symbol Interference. We confirm the application of DSSS in underwater acoustic communication in underwater by the simulation with underwater channel impulse response and experiment. As a simulation result, the BER of QPSK technique is $1.14{\times}10^{-1}$ and the BER of DSSS technique is $6.73{\times}10^{-3}$. And we performed the experiment of DSSS technique in underwater. As a experiment result, the BER of QPSK technique is $3.19{\times}10^{-1}$ and the BER of DSSS technique is $5.17{\times}10^{-4}$.

Performance of Two-Dimensional Soft Output Viterbi Algorithm for Holographic Data Storage (홀로그래픽 저장장치를 위한 2차원 SOVA 성능 비교)

  • Kim, Jinyoung;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.815-820
    • /
    • 2012
  • We introduce two-dimensional soft output Viterbi algorithm (2D SOVA) and iterative 2D SOVA for holographic data storage. Since the holographic data storage is 2D intersymbol interference (ISI) channel, the 2D detection schemes have good performance at holographic data storage. The 2D SOVA and iterative 2D SOVA are 2D detection schemes. We introduce and compare the two 2D detection schemes. The 2D SOVA is approximately 2 dB better than one-dimensional (1D) detection scheme, and iterative 2D SOVA is approximately 1 dB better than the 2D SOVA. In contrast, the iterative 2D SOVA is approximately twice complex higher than 2D SOVA, and 2D SOVA is approximately twice complex higher than 1D detection scheme.

Performance Improvement of S-MMA Adaptive Equalization Algorithm based on the Variable Step Size (가변 스텝 크기를 이용한 S-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.107-112
    • /
    • 2016
  • This paper proposes the improving the equalization performance using the variable step size in the S-MMA (Sliced-Multi Modulus Algorithm) equalization algorithm in order to minimize the effect of intersymbol interference which occurs at the nonlinear transfer function of communication channel. The S-MMA were showned for the improving the steady state equalization performance and misadjustment compared to the MMA present algorithm, this two algorithm has a limitation of performance improvement due to the adapting the fixed step size according to the error signal amplitude. In order to solving the abovemensioned problem, the proposed algorithm was adopting the variable step size proportional to the error signal amplitude and the computer simulation was performed for showing the performance improving. As a result of simulation, the proposed VSS S-MMA algorithm has more superior equalization performance compared to the present S-MMA.

Performance of VSCA Adaptive Equalization Algorithm for 16-QAM Signal (16-QAM 신호에 대한 VSCA 적응 등화 알고리즘의 성능)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.67-73
    • /
    • 2013
  • This paper relates with the performance of VSCA adaptive equalization algorithm that is used for the minimization of the intersymbol interference due to the distortion which occurs in the time dispersive channel for the transmission of 16-QAM signal. In the conventional SCA, it is possible to compensates the amplitude and phase in the received signal that are mixed with the intersymbol interference by the constellatin dependent constant by using the 2nd order statistics of the transmitted signal. But in the VSCA, it is possible to the increase the equalization performance by adding the concept of distance adjusted approach for constellation matching. We compare the performance of VSCA and SCA algorithm by computer simulation. For this, the equalizer output signal constellation, residual isi, maximum distortion and MSE were used for perfomance comparison. It was confirmed that, the VSCA algorithm has better than the SCA in every performance index by computer simulation.

A Performance Comparison of CR-MMA and CM-MMA Equalization Algorithm in 2-dimensional QAM System (2차원 QAM 시스템에서 CR-MMA 와 CM-MMA 등화 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.85-90
    • /
    • 2018
  • This paper compares the adaptive eualization performance of CR-MMA (Constellation Reduction-MMA) and CR-MMA (Constellation Matching-MMA) in order to minimization of intersymbol interference that is occur in channel for 2-dimensional QAM signal. For obtain the error signal in order to updating the tap coefficient of conventional adaptive equalization algorithm MMA, the CR-MMA converts the constellation reduction concept of high order 2-dimensional QAM nonconstant modulus signal to constant modulus signal and the CM-MMA use the constellation matchine error concept in order to force the matching the $2^{nd}$ and $4^{th}$ cumulant of equalizer output and transmitted signal constellation. By applying the different method for getting the error signal, these algorithm are possible to obtain the improved equalization performance compared to the conventional MMA algorithm, the improved performance of CR-MMA and CM-MMA were compared by computer simulation in this paper. As a result of simulation, the CM-MMA has more better performance in the equalizer internal performance than CR-MMA, but not in equalizer external performance as in SER.

Optimization of wire and wireless network using Global Search Algorithm (전역 탐색 알고리즘을 이용한 유무선망의 최적화)

  • 오정근;변건식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.251-254
    • /
    • 2002
  • In the design of mobile wireless communication system, the location of BTS(Base Transciver Stations), RSC(Base Station Controllers), and MSC(Mobile Switching Center) is one of the most important parameters. Designing wireless communication system, the cost of equipment is need to be made low by combining various, complex parameters. We can solve this problem by combinatorial optimization algorithm, such as Simulated Annealing, Tabu Search, Genetic Algorithm, Random Walk Algorithm that have been extensively used for global optimization. This paper shows the four kind of algorithms which are applied to the location optimization of BTS, BSC, and MSC in designing mobile communication system and then we compare with these algorithms. And also we analyze the experimental results and shows the optimization process of these algorithms. As a the channel of a CDMA system is shared among several users, the receivers face the problem of multiple-access interference (MAI). Also, the multipath scenario leads to intersymbol interference (ISI). Both components are undesired, but unlike the additive noise process, which is usually completely unpredictable, their space-time structure helps to estimate and remove them.

  • PDF

Adaptive blind equalization algorithm with dual-mode (이중 모드를 가지는 적응 블라인드 등화 알고리즘)

  • 정영화;진용옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.9
    • /
    • pp.2005-2013
    • /
    • 1997
  • The MCMA adaptive blind equalization algorithm has a excellent phase correction capabilities in addition to channel amplitude equalization, but has an inevitable error by mismatching between the original constellation points in arriving at the perfect equalization since unique new type constellation points are used as desired response instead of original constellation points and follows the slow convergence speed of CMA. In this paper, We propose an adaptive blind equalization algorithm with dual-mode, which has decision regions. Inside the decision regions, it operates as considering the moudlus of original data symbol point and outside the decision region, it operates as considerin gthe modulus of new constellation points. The proposed algorithm has a lower error in the steady state and rapid convergence speed toward steady state using the original data symbol points instead of new constellation points in the decision regions. From computer simulation, we confirm that the propposed algorithm has the performance superiority in residual ISI, convergence speed compared with the cnventional adaptive blind equalization algorithms, CMA, MCMA, Stop-and-Go algorithm.

  • PDF