DOI QR코드

DOI QR Code

A Study on the Underwater Acoustic Communication with Direct Sequence Spread Spectrum

직접 수열 대역확산 방식을 이용한 수중음향통신 연구

  • Han, Jeong-Woo (Dept. of Radio Communication Engineering, Korea Maritime University) ;
  • Kim, Ki-Man (Dept. of Radio Communication Engineering, Korea Maritime University) ;
  • Son, Yoon-Jun (Defense Agency for Technology and Quality)
  • Received : 2011.08.30
  • Accepted : 2011.10.20
  • Published : 2011.10.31

Abstract

In this paper, we study the application of DSSS(Direct Sequence Spread Spectrum) in underwater acoustic communication for robust the ISI(Inter-Symbol Interference. We confirm the application of DSSS in underwater acoustic communication in underwater by the simulation with underwater channel impulse response and experiment. As a simulation result, the BER of QPSK technique is $1.14{\times}10^{-1}$ and the BER of DSSS technique is $6.73{\times}10^{-3}$. And we performed the experiment of DSSS technique in underwater. As a experiment result, the BER of QPSK technique is $3.19{\times}10^{-1}$ and the BER of DSSS technique is $5.17{\times}10^{-4}$.

이 논문에서는 수중음향통신의 성능 저해 요소 가운데 하나인 다중경로로 인한 인접 심벌간의 간섭(Inter-Symbol Interference)을 극복하기 위하여 직접 수열 대역확산(Direct Sequence Spread Spectrum) 기법의 적용성에 관해 연구하였다. 직접 수열 대역확산 방식은 육상이동통신 분야에서는 이미 널리 적용되고 있으나 수중음향통신에서는 상대적으로 적은 관심을 받았다. 이에 그 적용성을 검증하기 위해 실제 수중 채널에서 수집한 채널 응답 함수를 이용하여 모의실험을 수행한 결과 일반적인 QPSK (Quadrature Phase Shift Keying) 기법의 경우 BER(Bit Error Rate)이 $6.73{\times}10^{-3}$이였으며, 직접 수열 대역확산기법이 적용된 경우 BER이 $1.14{\times}10^{-1}$으로 일반적인 QPSK에 비해 향상된 성능을 나타내는 것을 확인할 수 있었다. 근거리 해상 실험을 수행한 결과 일반적인 QPSK 기법의 경우 전송률 1 kbps에서 BER이 $3.19{\times}10^{-1}$이였으며, 직접 수열 대역확산 기법이 적용된 경우 BER이 $5.17{\times}10^{-4}$이었다.

Keywords

References

  1. 변무광, 박성준(2009), "수중 센서네트워크를 위한 초음파 통신 모뎀 설계 및 구현," 한국통신학회논문지 vol.34, no.6.
  2. Baggeroer(1984). A, "Acoustic telemetry - an overview," IEEE J. Oceanic Eng., vol.9, no.4, pp.229-235. https://doi.org/10.1109/JOE.1984.1145629
  3. Coatelan. S and Glavieux. A(1995), "Design and test of a coding OFDM system on the shallow water acoustic channel," OCEANS'95. MTS/IEEE Challenges of Our Changing Global Environment Conference Proceedings, Vol.3, pp.2065-2070, 9-12. https://doi.org/10.1109/OCEANS.1995.528896
  4. Freitag. L, Stojanovic. M, Grund. M and Singh. S(2002), "Acoustic Communications for Regional Undersea Observatories," in Proceedings of Oceanology International.
  5. Freitag. L, Stojanovic. M, Singh. S and Johnson. M(2001), "Analysis of Channel Effects on Direct-Sequence and Frequency-Hopped Spreadx Spectrum Acoustic Communication," IEEE J Ocean. Eng., Vol.26, No.4, pp.589-593. https://doi.org/10.1109/48.972098
  6. Kilfoyle. D.B. and Baggeroer. A(2000), "The state of art in underwater acoustic telemetry," IEEE J. Oceanic Eng., vol.25, no.1, pp.4-27. https://doi.org/10.1109/48.820733
  7. Madhow. U and Honig. M..L(1994), "MSSE Interference Suppression for Direct-Sequence Spread-Spectrum CDMA," IEEE Trans. Comm., Vol.42, No. 12, pp.3178-3188. https://doi.org/10.1109/26.339839
  8. Pateros. C.N. and Saulnier.G.J(1996), "An Adaptive Correlator Receiver for Direct-Sequence Spread-Spectrum Communication," IEEE Trans. Comm, Vol.COM-44, No.11, pp.1543-1552. https://doi.org/10.1109/26.544471
  9. Proakis. J.G. and Salehi. M.(2008), Digital Communications - Fifth Edition, McGraw.Hill.
  10. Suzuki. M and Sasaki. T(1992), "Digital acoustic image transmission system for deep sea research submersible," IEEE Oceanic Eng. Conf., pp.567-570, Newport. https://doi.org/10.1109/OCEANS.1992.607839
  11. Watanabe. Y, Ochi. H and Shimura. T(2005), "Basic Study on Acoustic Communication Using Direct-Sequence Spread Spectrum for Underwater Acoustic Positioning," Japanese J Appl. Phys., Vol.44, No.6B, pp4689-4693 https://doi.org/10.1143/JJAP.44.4689

Cited by

  1. Performance Evaluation of Underwater Acoustic Communication using Transmit Diversity in Water Tank vol.37, pp.3, 2013, https://doi.org/10.5394/KINPR.2013.37.3.269