• Title/Summary/Keyword: IRI(International Roughness Index)

Search Result 26, Processing Time 0.022 seconds

Characterization of Asphalt Pavement Distress Using Korean Pavement Research Program (한국형포장설계법을 이용한 아스팔트포장의 파손특성)

  • Lee, Kwan-Ho;Lee, Kyung-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2017
  • The main purpose of this study is to evaluate the main parameters involved in the asphalt pavement distresses, including IRI (International Rough Index), fatigue, and permanent deformation. The main parameters are the region (Seoul and Busan), traffic level, asphalt binder, maximum aggregate of surface course, thickness of the surface course and base. A total of 64 case studies were carried out under the auspices of the KPRP (Korea Pavement Research Program). From the analysis of the KPRP test results, the key factors for the asphalt pavement distress were determined. Considering the effect of one variable in the basic condition, asphalt binder was the major factor having an effect on the distresses for an AADT (Annual Average Daily Traffic) of 5000 in the Seoul area. Among the remaining factors, the results were found to be in the order of the base layer thickness (A), surface layer thickness (B), and aggregate particle size thickness (D). The same results were obtained for an AADT of 10000. In the case of Busan with an AADT of 5000, the same result was obtained as for Seoul. Among the remaining factors, the results were in the order of the base layer thickness (A), aggregate particle thickness (D), and surface layer thickness (B). Even though there was a slight difference in the effect of the traffic level and region, asphalt binder was the parameter having the greatest effect on the asphalt pavement distress. In the case where the effect of multiple parameters was analyzed, the combination of the asphalt binder and base thickness showed a relatively strong effect.

Evaluation of Ride Quality Sensitivity on Vehicle Dynamic Behavior Using a Small Scale Simulator (소형 시뮬레이터를 이용한 차량거동요소별 승차감 민감도 평가)

  • Lee, Jaehoon;Sohn, Ducksu;Park, Jejin;Mun, Hyungchul
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.97-106
    • /
    • 2017
  • PURPOSES: This study aims to evaluate the effects of vehicle dynamic behaviors on ride quality. METHODS : Simulation and field test were conducted to analyze the behavior of a driving vehicle. The simulation program CarSIM was applied and an INS (Inertial Navigation System) was used for field experiments. A small simulator was developed to simulate vehicle behavior such as roll, pitch, and bounce. The panels evaluated the ride quality in five stages from "very satisfied"to "very dissatisfied."Experiments were conducted on a total of 144 cases of vehicle behavior combinations. RESULTS :In both simulation and field tests, pitch is the largest and yaw the smallest. Especially in the field test, the amount of yaw is very low, about 7% of pitch and 18% of roll. The sensitive and extensive analysis conducted related ride quality with changing the frequency and amplitude. It was found that the most sensitive frequency range is 8 Hz across all amplitudes. Moreover, the combination of the roll and bounce was most sensitive to the ride quality at the low-frequency range. CONCLUSIONS : This result show that the vertical vehicle behavior (bounce) as well as the rotational behavior (roll and pitch) are highly correlated with ride quality. Therefore, it is expected that a more reasonable roughness index can be developed through a combination of vertical and rotational vehicle behavior.

Analysis of Riding Quality Acceptability and Characteristics of Expressway Users and Evaluation of MRI Thresholds using Receiver Operating Characteristic curves (고속도로 이용자의 승차감 평가특성 및 만족도 분석과 ROC 곡선을 이용한 평탄성 관리기준 적정성 검토)

  • Lee, Jaehoon;Sohn, Ducksu;Ryu, SungWoo;Kim, Youngwon;Park, Junyoung
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.35-44
    • /
    • 2018
  • PURPOSES : The purpose of this research is to analyze the characteristics of panels that affect the evaluating results of riding quality and to evaluate the appropriateness of roughness management criteria based on ride comfort satisfaction. METHODS : In order to analyze the influence of panel characteristics of riding quality, 33 panels, consisting of civilians and experts, were selected. Also, considering the roughness distribution of the expressway, 35 sections with MRI ranging from 1.17 m/km to 4.65 m/km were selected. Each panel boarded a passenger car and evaluated the riding quality with grades from 0 to 10, and assessed whether it was satisfied or not. After removing outlier results using a box plot technique, 964 results were analyzed. An ANOVA was conducted to evaluate the effects of panel expertise, age, driving experience, vehicle ownership, and gender on the evaluation results. In addition, by using the receiver operating characteristics (ROC) curve, the MRI value, which can most accurately evaluate the satisfaction with riding quality, was derived. Then, the compatibility of MRI was evaluated using AUC as a criterion to assess whether the riding quality was satisfactory. RESULTS : Only the age of the panel participants were found to have an effect on the riding quality satisfaction. It was found that satisfaction with riding quality and MRI are strongly correlated. The satisfaction rate of roughness management criteria on new (MRI 1.6 m/km) and maintenance (MRI 3.0 m/km) expressways were 95% and 53%, respectively. As a result of evaluating the roughness management criteria by using the ROC curve, it was found that the accuracy of satisfaction was the highest at MRI 3.1-3.2 m/km. In addition, the AUC of the MRI was about 0.8, indicating that the MRI was an appropriate index for evaluating the riding quality satisfaction. CONCLUSIONS : Based on the results, the distribution of the panels' age should be considered when panel rating is conducted. From the results of the ROC curve, MRI of 3.0 m/km, which is a criterion of roughness management on maintenance expressways, is considered as appropriate.

Field Performance Evaluation of Micro-surfacing Method and Polymer Slurry Seal Method Used in National Highway (일반국도에 적용한 마이크로서페이싱공법과 폴리머슬러리실공법에 대한 현장 공용성 평가)

  • Son, Hyeon Jang;Kim, Yong Joo;Baek, Jong Eun;Lim, Jae Kyu;Kim, Boo Il
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • PURPOSES : Recently, crack, rutting, and stripping problems from the surface of asphalt pavements in National highway are observed and they affect the drivers to feel uncomfortable on the road. Surface treatments are recommended to use in distressed pavements due to cost-effective, and improvement of surface performance. The purpose of this study is to evaluate the performance of micro-surfacing and polymer slurry seal treatments for distressed asphalt pavements. METHODS : Surface conditions and friction resistance are evaluated for asphalt pavements treated with micro-surfacing and polymer slurry seal mixes in National highway 30 line and 34 line. Visual observation is conducted and surface performance is measured by PES (Performance Evaluation Surveyor) in terms of crack ratio, rutting and IRI(International Roughness Index). BPN(British Pendulum Number) is measured by BPT(British Pendulum Tester) to evaluate the friction resistance in the field. RESULTS : The surface evaluation results are presented for asphalt pavement treated with micro-surfacing and polymer slurry seal treatments in National highway 30 line and 34 line. Based on the visual observation, micro-surfacing and polymer slurry seal treatments show better improvements in terms of cracks and stripping. Based on the surface conditions measured by PES vehicle, the surface performance of micro-surfacing treatments improves from 53.3% to 54.2% and the surface performance of polymer slurry seal treatments improves from 21.6% to 59.7%. However, the friction resistance of both micro-surfacing and polymer slurry seal treatments decreases from 2.5% to 6.7%. Further, it should be verified to produce the surface exposed with aggregates during the construction process of both treatment methods in the field. CONCLUSIONS : Based on the performance evaluation results in the filed, the surface performance of asphalt pavement treated with micro-surfacing and polymer slurry seal treatments improves from 21.6% to 59.7%. While, the friction resistance of asphalt pavement treated with micro-surfacing and polymer slurry seal treatments does not improve. It can be concluded that current micro-surfacing and polymer slurry seal treatments would improve surface performance but would not improve the friction resistance.

Influence on Predicted Performance of Jointed Concrete Pavement with Variations in Axle Load Spectra (축하중 분포 변화가 콘크리트 포장의 공용성 예측결과에 미치는 영향 연구)

  • Lee, Kyungbae;Kwon, Soonmin;Lee, Jaehoon;Sohn, Duecksu
    • International Journal of Highway Engineering
    • /
    • v.16 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • PURPOSES : The purpose of this article is to investigate the predicted life of jointed concrete pavement (JCP) with two variables effecting on axle load spectra (ALS). The first variable is different data acquisition methods whether using high-speed weigh-in-motion (HS-WIM) or not and the other one is spectra distribution due to overweight enforcement on main-lane of expressway using HS-WIM. METHODS : Three sets of ALS had been collected i) ALS provided by Korea Pavement Research Program (KPRP), which had been obtained without using HS-WIM ii) ALS collected by HS-WIM before the enforcement at Kimcheon and Seonsan site iii) ALS collected after the enforcement at the same sites. And all ALS had been classified into twelve vehicle classes and four axle types to compare each other. Among the vehicle classes, class 6, 7, 10 and 12 were selected as the major target for comparing each ALS because these were considered as the primary trucks with a high rate of overweight loading. In order to analyze the performance of JCP based on pavement life, fatigue crack and International Roughness Index (IRI) were predicted using road pavement design program developed by KPRP and each ALS with same annual average daily traffic (AADT) was applied to design slab thickness. RESULTS : Comparison ALS of KPRP with those of HS-WIM shows that the ALS of KPRP has a low percentage of heavy spectra such as 6~9 tonnes for single axle, 18~21 tonnes for tandem axle and 27~30 tonnes for tridem axle than other two ALS of HS-WIM in most vehicle classes and axle types. It means that ALS of KPRP was underestimated. And after the enforcement, percentage of heavy spectra close to 10 tonnes per an axle are lowered than before the enforcement by the effect of overweight enforcement because the spectra are related to overweight regulation. Prediction results of pavement life for each ALS present that the ALS of HS-WIM collected before the enforcement makes the pavement life short more than others. On the other hand, the ALS of KPRP causes the longest life under same thickness of slab. Thus, it is possible that actual performance life of JCP under the traffic like ALS of HS-WIM could be short than predicted life if the pavement was designed based on ALS provided by KPRP. CONCLUSIONS : It is necessary to choose more reliable and practical ALS when designing JCP because ALS can be fairly affected by acquisition methods. In addition, it is important to extend performance life of the pavement in service by controlling traffic load such as overweight enforcement.

Development of Road Surface Management System using Digital Imagery (수치영상을 이용한 도로 노면관리시스템 개발)

  • Seo, Dong-Ju
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.1
    • /
    • pp.35-46
    • /
    • 2007
  • In the study digital imagery was used to examine asphalt concrete pavements. With digitally mastered-image information that was filmed with a video camera fixed on a car travelling on road at a consistent speed, a road surface management system that can gain road surface information (Crack, Rutting, IRI) was developed using an object-oriented language "Delphi". This system was designed to improve visualized effects by animations and graphs. After analyzing the accuracy of 3-D coordinates of road surfaces that were decided using multiple image orientation and bundle adjustment method, the average of standard errors turned out to be 0.0427m in the X direction, 0.0527m in the Y direction and 0.1539m in the Z direction. As a result, it was found to be good enough to be put to practical use for maps drawn on scales below 1/1000, which are currently producted and used in our country, and GIS data. According to the analysis of the accuracy in crack width on 12 spots using a digital video camera, the standard error was found to be ${\pm}0.256mm$, which is considered as high precision. In order to get information on rutting, the physically measured cross sections of 4 spots were compared with cross sections generated from digital images. Even though a maximum error turned out to be 10.88mm, its practicality is found in work efficiency.

  • PDF