• 제목/요약/키워드: IR thermal image

검색결과 65건 처리시간 0.025초

이중 시야 중적외선 광학계 비열화·나르시서스 분석 (Athermalization and Narcissus Analysis of Mid-IR Dual-FOV IR Optics)

  • 정도환;이준호;정호;옥창민;박현우
    • 한국광학회지
    • /
    • 제29권3호
    • /
    • pp.110-118
    • /
    • 2018
  • 항공용 전자 광학 타겟팅 시스템을 위한 중적외선 광학계를 설계하였다. 본 광학계는 이중 시야를 갖도록 설계되었으며, 빔 축소 전단 광학계, 줌 렌즈 그룹, 릴레이 렌즈 그룹, 콜드스탑 공액 광학계 및 냉각 적외선 검출기로 구성된다. 적외선 검출기는 단일 화소의 크기가 $15{\times}15{\mu}m$$1280{\times}1024$ 화소 배열을 가지며 잡음을 최소화하기 위하여, f/5.3의 냉각 콜드스탑이 적용된 제품으로 선정하였다. 이중 시야 ($1.50^{\circ}{\times}1.20^{\circ}$, $5.40^{\circ}{\times}4.23^{\circ}$)는 두 개의 렌즈를 삽입하는 방식으로 구현했으며, 줌 배율 변경 시 모든 시야에 걸쳐 f/5.3의 콜드스탑의 효율을 유지하도록 설계하였다. 열 효과가 이미지에 미치는 영향을 조사하기 위해 비열화 및 나르시서스 분석을 수행하였으며, 비열화 분석은 $-55{\sim}50^{\circ}C$의 작동 온도를 기준으로 초점 이동과 잔여 고차 파면 수차에 조사하였고 제르니케 다항식을 이용한 민감도 분석을 수행하여 최적의 보상자를 선정하였다. 선정된 보상자의 최적 이동을 고려한 MTF 해상력을 확인한 결과, 작동 온도 전 구간에 걸쳐 요구조건인 33 lp/mm에서 축상 10% 이상의 성능을 유지하는 것을 확인하였으며, 나르시서스 분석 결과, NITD (Narcissus Induced Temperature Difference) 값이 $1.5^{\circ}C$ 이하가 되도록 설계 된 것을 확인하였다.

Heating Behavior of Silicon Carbide Fiber Mat under Microwave

  • Khishigbayar, Khos-Erdene;Seo, Jung-Min;Cho, Kwang-Youn
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.707-711
    • /
    • 2016
  • A small diameter of SiC fiber mat can produce much higher heat under microwave irradiation than the other types of SiC materials. Fabrication of high strength SiC fiber consists of iodine vapor curing on polycarbosilane precursor and heat treatment process. The curing stage of polycarbosilane fiber was maintained at $150-200^{\circ}C$ in a vacuum condition under the iodine vapor to fabricate a high thermal radiation SiC fiber. The structure and morphology of the fibers were characterized by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). In this study, the thermal properties of SiC fiber mats under microwave have been analyzed with an IR thermal camera and its image analyzer. The prepared SiC fiber mats radiated high temperature with extremely high heating rate up to $1100^{\circ}C$ in 30 seconds. The fabricated SiC fiber mats were not oxidized after the heat radiation process under the microwave irradiation.

Characteristics of Infrared Blocking, Stealth and Color Difference of Aluminum Sputtered Fabrics

  • Han, Hye Ree
    • 한국의류학회지
    • /
    • 제43권4호
    • /
    • pp.592-604
    • /
    • 2019
  • This study examines the stealth function of sputtered fabric with an infrared thermal imaging camera in terms of the thermal and infrared (IR) transmittance characteristics. Various base fabrics were selected, infrared imaging was performed, and infrared transmittance was measured. By infrared camera experiment it was found that the sample was concealed because it had a similar color to the surroundings when the aluminum layer was directed toward the outside. In addition, a comparison of the infrared thermographic image of the untreated sample and the sputtered sample in the laboratory showed that the difference in ${\Delta}E$ value ranged from 31 to 90.4 and demonstrated effective concealment. However, concealment was not observed in the case of the 3-layer (Nylon-Al-Nylon) model when a sputtered aluminum layer existed between two nylon layers. The direction of the sputtering layer did not affect the infrared transmittance in the infrared transmittance experiment. Therefore, it seems better to interpret the concealing effect in the infrared thermographic images by using thermal transfer theory rather than infrared transmittance theory. We believe that the results of this study will be applicable to developing high performance smart clothing and military uniforms.

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

흑연표면의 열방사율 측정시 결정립 배향성의 영향 (Thermal Emissivity Changes as a Function of Degree of Flakes Alignment on the Graphite Surface)

  • 노재승;안재상;김범준;전호연;서승국;김석환;이상우
    • 한국표면공학회지
    • /
    • 제42권2호
    • /
    • pp.95-101
    • /
    • 2009
  • This study is the research on the thermal emissivity depending on the bulk graphite's alignment degree. Bulk graphites were manufactured by uni-axial pressing and subsequent heat treatment of natural graphite flakes with organic binder. The samples were prepared to be $0^{\circ}$ (relative to the 002 c-face), $45^{\circ}$, and $90^{\circ}$ (relative to the 100 a-face) for measuring alignment degree. The alignment degree of the sample was measured by XRD. The thermal emissivity was measured by infrared thermal image camera at $100^{\circ}C$ and compared with the value obtained by Infrared spectroscopy. The alignment degree and thermal emissivity of $0^{\circ}$ sample were measured to be 0 and 0.70 respectively. And those of $90^{\circ}$ sample were 0.73 and 0.80 respectively. The emissivity value was correlated with obtained by IR spectroscopy. Therefore it was considered that the thermal emissivity of the bulk graphite is correlated with the alignment degree.

모듈러 주택의 열교 및 결로 취약부위별 단열성능 분석 (Insulation Performance Analysis of Vulnerable Parts of Thermal Bridge and Condensation in Modular Buildings)

  • 김미연;김형근;박진철
    • 한국건설관리학회논문집
    • /
    • 제22권3호
    • /
    • pp.31-39
    • /
    • 2021
  • 모듈러 공법은 내장재와 기계·전기 설비 등이 시공된 구조체를 제작 공장에서 건설 현장으로 운반하여 설치 및 시공하는 공법이다. 모듈러 공법은 특히 주택과 같은 소규모의 비교적 구조가 간단한 건축물을 대상으로 활발하게 적용되고 있는 추세이다. 국내건설 산업에 모듈러 주택의 도입된 기간이 길지 않은 만큼 아직 모듈러 주택의 환경적 특성에 대한 연구가 부족한 실정이다. 따라서 본 연구의 목적은 모듈러 주택의 단열성능을 적외선 이미지 분석과, Air-Surface Thermal Ratio 방법, 실내외 온도차비를 활용하여 실증적으로 분석하는 것이다. 이를 위해 실제 서울시에 위치한 준공 후 2년이 경과된 모듈러 주택과 RC 주택을 비교하여 단열성능 분석하였다.

소형 표적 탐지를 위한 파노라믹 적외선 영상 향상 장치 및 경보시스템 구현 (The Realization of Panoramic Infrared Image Enhancement and Warning System for Small Target Detection)

  • 김기홍;김주영;정태연;전병균;이의혁;김덕규
    • 한국멀티미디어학회논문지
    • /
    • 제8권1호
    • /
    • pp.46-55
    • /
    • 2005
  • 본 논문에서는 소형 위협체를 조기에 탐지하여 위치를 알려주는 파노라믹 적외선 영상 경보 장치를 구현하였고, 경보 성능 향상을 위한 적외선 영상 향상 기법을 제안하였다. 구현 장치는 센서 헤드 유닛, 신호 처리 유닛 등으로 구성된다. 센서 헤드 유닛은 1차원 다중 배열 적외선 센서를 정속으로 고속 회전하여 360도의 넓은 시계 영역을 가지는 파노라믹 열영상을 획득한다. 신호 처리 유닛은 파노라믹 영상을 90도의 부영상으로 나누고, 각 부영역의 통계적 특성에 따라 적응적 평탄역값(adaptive plateau value)을 구한다 그리고 적응적 평탄역값으로 히스토그램을 변화시킴으로써 위협체을 두드러지게 하였으며, 실시간 처리를 위하여 DSP와 FPGA를 이용하여 장치를 구현하였다. 구현 시스템에 제안한 영상 향상 기법을 적용한 결과 기존 기법에 비해 오경보율이 낮음과 시각적으로 위협체의 식별이 용이함을 확인하였다.

  • PDF

Development of PKNU3: A small-format, multi-spectral, aerial photographic system

  • Lee Eun-Khung;Choi Chul-Uong;Suh Yong-Cheol
    • 대한원격탐사학회지
    • /
    • 제20권5호
    • /
    • pp.337-351
    • /
    • 2004
  • Our laboratory originally developed the compact, multi-spectral, automatic aerial photographic system PKNU3 to allow greater flexibility in geological and environmental data collection. We are currently developing the PKNU3 system, which consists of a color-infrared spectral camera capable of simultaneous photography in the visible and near-infrared bands; a thermal infrared camera; two computers, each with an 80-gigabyte memory capacity for storing images; an MPEG board that can compress and transfer data to the computers in real-time; and the capability of using a helicopter platform. Before actual aerial photographic testing of the PKNU3, we experimented with each sensor. We analyzed the lens distortion, the sensitivity of the CCD in each band, and the thermal response of the thermal infrared sensor before the aerial photographing. As of September 2004, the PKNU3 development schedule has reached the second phase of testing. As the result of two aerial photographic tests, R, G, B and IR images were taken simultaneously; and images with an overlap rate of 70% using the automatic 1-s interval data recording time could be obtained by PKNU3. Further study is warranted to enhance the system with the addition of gyroscopic and IMU units. We evaluated the PKNU 3 system as a method of environmental remote sensing by comparing each chlorophyll image derived from PKNU 3 photographs. This appraisement was backed up with existing study that resulted in a modest improvement in the linear fit between the measures of chlorophyll and the RVI, NDVI and SAVI images stem from photographs taken by Duncantech MS 3100 which has same spectral configuration with MS 4000 used in PKNU3 system.

Research of Non-integeral Spatial Interpolation for Precise Identifying Soybean Location under Plastic Mulching

  • Cho, Yongjin;Yun, Yeji;Lee, Kyou-seung;Oh, Jong-woo;Lee, DongHoon
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.156-156
    • /
    • 2017
  • Most crop damages have been occurred by vermin(e.g., wild birds and herbivores) during the period between seeding and the cotyledon level. In this study, to minimize the damage by vermin and acquire the benefits such as protection against weeds and maintenance of water content in soil, immediately vinyl mulching after seeding was devised. Vinyl mulching has been generally covered with black color vinyl, that crop seeding locations cannot be detected by visible light range. Before punching vinyl, non-contact and non-destructive methods that can continuously determine the locations are necessary. In this study, a crop position detection method was studied that uses infrared thermal image sensor to determine the cotyledon position under vinyl mulch. The moving system for acquiring image arrays has been developed for continuously detecting crop locations under plastic mulching on the field. A sliding mechanical device was developed to move the sensor, which were arranged in the form of a linear array, perpendicular to the array using a micro-controller integrated with a stepping motor. The experiments were conducted while moving 4.00 cm/s speed of the IR sensor by the rotational speed of the stepping motor based on a digital pulse width modulation signal from the micro-controller. The acquired images were calibrated with the spatial image correlation. The collected data were processed using moving averaging on interpolation to determine the frame where the variance was the smallest in resolution units of 1.02 cm. For this study, the spline method was relatively faster than the other polynomial interpolation methods, because it has a lower maximum order of formulation when using a system such as the tridiagonal linear equation system which provided the capability of real-time processing. The temperature distribution corresponding to the distance between the crops was 10 cm, and the more clearly the leaf pattern of the crop was visually confirmed. The frequency difference was decreased, as the number of overlapped pixels was increased. Also the wave pattern of points where the crops were recognized were reduced.

  • PDF

보일러튜브 용접부 비파괴검사를 위한 컴퓨터화 방사선투과시험 적용 연구 (Application of Computed Radiography for Nondestructive Testing of Boiler Tube Weldments)

  • 박상기;안연식;길두송
    • 동력기계공학회지
    • /
    • 제13권5호
    • /
    • pp.95-102
    • /
    • 2009
  • A steam generator (boiler) in thermal power plants, consisting of more than 30,000 parts and components, can lead to the plant shutdown with damage to even the small part of the components; esp., like weld failures on boiler tubes. Consequently it is greatly demanded to improve the quality of the weld on the boiler tube for the stable operation of the power plants. Because of the feature of the welding, which is done past by melting the work pieces and adding a filler material that cools to become a strong coalescence, there is a great possibility that weld failures take place. As a result, it is regulated to make a non-destructive testing, like radiography test, to detect defects and flaws in the weld. The current film radiography test provides a lower image quality exceeding 2.0% of a basic quality level for a penetrameter, it is very likely to fail to detect micro defect. As a result, the prevention for the boiler tube failure has not been made effectively. In this study, computed radiography technology has been applied as a digital radiography test to the boiler tube weld, and Se-75 radiation source was used to improve the image quality, instead of Ir-192 source. As a result of this study, it is proven to save the time and cost for test and to enhance the quality level of penetrameter penetrating image, which enables to upgrade the quality of radiography test to the boiler tube weld.

  • PDF