• 제목/요약/키워드: IR and Raman spectroscopy

검색결과 85건 처리시간 0.025초

아연결정유의 제조에 있어서 소성조건에 따른 결정생성과 성장에 관한 연구 (A Study of Nucleation and Growth in Zinc Crystal Glaze by Firing Conditions)

  • 이지연;이병하
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.253-262
    • /
    • 2009
  • The purpose of this study is to find out optimum conditions for zinc crystalline glaze under variables of firing: maximum firing temperature, crystal growth temperature, temperature increasing speed, annealing speed, holding time at maximum temperature and holding time at crystal growth temperature. Ferro Frit3110, ZnO and Quartz were used as starting materials and tested by three component system. The best result of test was selected and extended to its vicinity as five glaze formulas. And then the specimens were experimented by variable firing conditions and analyzed by crystal appearance observation, XRD, FT-IR and Raman spectroscopy. In result, main crystal was willemite in the zinc glazes. Some gahnite was detected in specimens which were fired at $1230^{\circ}C$, $1250^{\circ}C$ and $1270^{\circ}C$, however gahnite was not identified at $1300^{\circ}C$. Optimum zinc crystalline glaze was gained by following firing condition: temperature increasing speed $5^{\circ}C$/min, holding 1 h at $1270^{\circ}C$, annealing speed $3^{\circ}C$/min till $1170^{\circ}C$, holding 2 h at $1170^{\circ}C$ then naturally annealed.

나노세공 Zirconia의 합성 및 특성평가 (Synthesis and Characterization of Nanoporous Zirconia)

  • 우승식;김호건
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.309-314
    • /
    • 2007
  • Zirconia powders with nano size pores and high specific surface areas were synthesized via aqueous precipitation and hydrothermal synthetic method using $ZrOCl_28H_2O$ and $NH_4OH$ under pH=11 and ambient condition. By this reaction. zirconia hydrate $(ZrO_x(OH)_{4-2x})$ was primarily synthesized and the obtained zirconia hydrate was heat treated hydrothermally using an autoclave at various temperatures under pH=11. X-ray diffraction, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, FT-IR, Raman, Particle size analysis, DTA-TG, and BET techniques were used for the characterization of the powder. The synthesized zirconia showed an amorphous phase, however, the phase was transformed to the crystalline state during the hydrothermal process. The observed crystalline phase above $160^{\circ}C$ was a mixed phase of monoclinic and tetragonal zirconia. By the BET analysis, it was found that the specific surface area was ranged in $126{\sim}276m^2/g$ and the zirconia had the cylindrical shaped pores with average diameter of $2{\sim}7nm$.

Investigation of Photoluminescence and Annealing Effect of PS Layers

  • Han, Chang-Suk;Park, Kyoung-Woo;Kim, Sang-Wook
    • 한국재료학회지
    • /
    • 제28권2호
    • /
    • pp.124-128
    • /
    • 2018
  • N-type porous silicon (PS) layers and thermally oxidized PS layers have been characterized by various measuring techniques such as photoluminescence (PL), Raman spectroscopy, IR, HRSEM and transmittance measurements. The top surface of PS layer shows a stronger photoluminescence peak than its bottom part, and this is ascribed to the difference in number of fine silicon particles of 2~3 nm in diameter. Observed characteristics of PL spectra are explained in terms of microstructures in the n-type PS layers. Common features for both p-type and n-type PS layers are as follows: the parts which can emit visible photoluminescence are not amorphous, but crystalline, and such parts are composed of nanocrystallites of several nm's whose orientations are slightly different from Si substrate, and such fine silicon particles absorb much hydrogen atoms near the surfaces. Light emission is strongly dependent on such fine silicon particles. Photoluminescence is due to charge carrier confinement in such three dimensional structure (sponge-like structure). Characteristics of visible light emission from n-type PS can be explained in terms of modification of band structure accompanied by bandgap widening and localized levels in bandstructure. It is also shown that hydrogen and oxygen atoms existing on residual silicon parts play an important role on emission stability.

LPCVD로 성장된 다결정 3C-SiC 박막의 물리적 특성 (Physical Characteristics of Polycrystalline 3C-SiC Thin Films Grown by LPCVD)

  • 정귀상;김강산
    • 한국전기전자재료학회논문지
    • /
    • 제19권8호
    • /
    • pp.732-736
    • /
    • 2006
  • This paper describes the physical characterizations of polycrystalline 3C-SiC thin films heteroepitaxially grown on Si wafers with thermal oxide, In this work, the 3C-SiC film was deposited by LPCVD (low pressure chemical vapor deposition) method using single precursor 1, 3-disilabutane $(DSB:\;H_3Si-CH_2-SiH_2-CH_3)\;at\;850^{\circ}C$. The crystallinity of the 3C-SiC thin film was analyzed by XPS (X-ray photoelectron spectroscopy), XRD (X-ray diffraction) and FT-IR (fourier transform-infrared spectometers), respectively. The surface morphology was also observed by AFM (atomic force microscopy) and voids or dislocations between SiC and $SiO_2$ were measured by SEM (scanning electron microscope). Finally, residual strain was investigated by Raman scattering and a peak of the energy level was less than other type SiC films, From these results, the grown poly 3C-SiC thin film is very good crystalline quality, surface like mirror, and low defect and strain. Therefore, the polycrystalline 3C-SiC is suitable for harsh environment MEMS (Micro-Electro-Mechanical-Systems) applications.

White Light Emission from a Colloidal Mixture Containing ZnS Based Nanocrystals: ZnS, ZnS:Cu and ZnS:Mn

  • Lee, Jae Woog;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권1호
    • /
    • pp.189-196
    • /
    • 2014
  • Water dispersible ZnS based nanocrystals: ZnS (blue), ZnS:Cu (green) and ZnS:Mn (yellow-orange) were synthesized by capping the surface of the nanocrystals with a mercaptopropionic acid (MPA) molecule. The MPA capped ZnS based nanocrystal powders were characterized by using XRD, HR-TEM, EDXS, FT-IR, and FT-Raman spectroscopy. The optical properties of the colloidal nanocrystals were also measured by UV/Vis and photoluminescence (PL) spectroscopies in aqueous solvents. The PL spectra showed broad emission peaks at 440 nm (ZnS), 510 nm (ZnS:Cu) and 600 nm (ZnS:Mn), with relative PL efficiencies in the range of 4.38% to 7.20% compared to a reference organic dye. The measured average particle sizes from the HR-TEM images were in the range of 4.5 to 5.0 nm. White light emission was obtained by mixing these three nanocrystals at a molar ratio of 20 (ZnS):1 (ZnS:Cu):2 (ZnS:Mn) in water. The measured color coordinate of the white light was (0.31, 0.34) in the CIE chromaticity diagram, and the color temperature was 5527 K.

Spectral and Geometrical Study of Two Cadmium Complexes, mer-R,S-[Cd(aepn)2]X2 (X: I-, Cl-, aepn: N-(2-Aminoethyl)-1,3-propanediamine) Supported by Solution Experiments

  • Hakimi, Mohammad;Mardani, Zahra;Moeini, Keyvan
    • 대한화학회지
    • /
    • 제57권4호
    • /
    • pp.447-454
    • /
    • 2013
  • In this research, two new complexes of N-(2-aminoethyl)-1,3-propanediamine (aepn), $[Cd(aepn)_2]I_2$ (1) and $[Cd(aepn)_2]Cl_2{\cdots}H_2O$ (2), were prepared and identified by elemental analysis, FT-IR, Raman spectroscopy and single-crystal X-ray diffraction. Geometry around the cadmium atom in two complexes by coordination of six nitrogen atoms of two aepn is distorted octahedral. If distortion in the mer-$[Cd(aepn)_2]^{2+}$ cation is disregarded, it has a $C_2$ axis and $C_2$ symmetry. The cyclic voltammetry experiments were carried out to study the complexation process. Two structural surveys on coordination modes and complexes of aepn are presented. A study was carried out using CSD data to estimate the averages of bond lengths for different types of the Cd-N bonds. It was found that the intermolecular $N-H{\cdots}I$, $C-H{\cdots}I$ hydrogen bonds in 1 and $N-H{\cdots}Cl$, $N-H{\cdots}O$, $C-H{\cdots}O$, $O-H{\cdots}Cl$ in 2 stabilized the crystal networks.

V의 고용이 Malayaite의 결정 및 발색에 미치는 영향 (Effect of V-doping on Colour and Crystallization of Malayaite Pigments)

  • 주인돈;이병하
    • 한국세라믹학회지
    • /
    • 제47권4호
    • /
    • pp.302-307
    • /
    • 2010
  • This study aims to synthesize emerald-green malayaite pigments using $CaCO_3$, $SiO_2$, $SnO_2$ and $V_2O_5$. For this purpose, the optimum composition is $CaV_{0.25}Sn_{0.687}SiO_5$ and heating condition is at $1250^{\circ}C$ for 6 h of soaking time. The samples were characterized by X-ray diffraction (XRD), the Fourier Transform Infrared Spectrometers(FT-IR), the Raman Spectrometer, Scanning Electron Microscope(SEM) and the UV/Vis spectroscopy. The substituted V ion for Sn was observed to be quadrivalence. The analytical results of the synthesized pigment showed the tetragonal crystal, a typical form of Malayaite, and the particle size to be approximately $5{\sim}10\;{\mu}m$. The color in lime glaze added 12 wt% pigment was emerald green, and CIE Lab parameters are $L^*=67.73$, $a^*=-12.39$ and $b^*=9.28$.

Reaction and Theoretical Study of the Coordination of an N2O-Donor Amino Alcoholic Ligand Toward Group 12 Metals Mixtures

  • Mardani, Zahra;Moeini, Keyvan;Kazemshoar-Duzduzani, Reza
    • 대한화학회지
    • /
    • 제63권3호
    • /
    • pp.160-165
    • /
    • 2019
  • A series of reactions between an amino alcoholic ligand, cis-2-((2-((2-hydroxyethyl)amino)ethyl)amino)cyclohexan-1-ol (HEAC), with the mixtures of group 12 metals including, $HgCl_2/CdCl_2$, $HgCl_2/CdI_2$, $ZnCl_2/CdCl_2$ and $ZnCl_2/CdCl_2/HgCl_2$ was experimentally and theoretically studied to determine the most stable product of these reactions. Furthermore, the Cambridge Structural Database (CSD) studies were done to evaluate the theoretical results. The products were characterized by elemental analysis, FT-IR, Raman, $^1H$ NMR spectroscopy and single-crystal X-ray diffraction. Based on these investigations a binuclear structure of cadmium, [$Cd_2(HEAC)_2({\mu}-Cl)_2Cl_2$] (1), is the most stable product that was formed in all studied reactions between HEAC and metals mixtures. In this structure, the cadmium atom has a $CdN_2O({\mu}-Cl)_2Cl$ environment and distorted octahedral geometry.

플라즈마 화학기상증착법으로 성장시킨 수소화 비정질 규소박막의 결정화 (Crystallization of a-Si : H thin films deposited by RF plasma CVD method)

  • 김용탁;장건익;홍병유;서수정;윤대호
    • 한국결정성장학회지
    • /
    • 제11권2호
    • /
    • pp.56-59
    • /
    • 2001
  • RF plasma CVD법에 의해 증착된 비정질 실리콘 박막은 Si(100)웨이퍼와 유리에 각각 증착되었다. 본 연구에서는 RF power가 미세결정 실리콘 박막의 광학적 밴드갭($E_g$),투과도 그리고 결정성에 미치는 영향을 조사하였다 라만 분광분석 결과 미세결정 실리콘은 480과 520$cm^{-1}$에서 두개의 피크 즉, 비정질과 미세결정의 혼상으로 구성되어 있음을 확인할 수 있었고 XRD분석에서도 (111)방향의 피크가 RF power 300W에서 관찰되었다. 또한, 박막의 투과도는 자외/가시부 분광 광도계를 이용하였으며, 적외 흡광 스펙트럼을 사용하여 실리콘과 결합하고 있는 수소의 형태를 고찰하였다.

  • PDF

Ni-doped Willemite계 청색안료에 관한 연구 (A Study on the NiO-doped Willemite Pigments)

  • 이지연;이현수;이병하
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.134-140
    • /
    • 2011
  • To study the effect of color development of Ni-doped willemite blue pigments, five batches of compositions were prepared and fired at $1350^{\circ}C$/hold for 1 h. When Ni was substituted for ZnO by 0.03 mole the optimum result were obtained. Then they were fired at $1300^{\circ}C$ and held for 1, 2, 4 and 6 h respectively for the purpose sake. XRD, Raman spectroscopy, FT-IR, UV-vis were used to analyze the results of experiment. The substitution of 0.03mole Ni for Zn was most optimum and which produced good willemite at the temperature of $1300^{\circ}C$, holding for 6 h. In ceramic arts, cobalt has been used for blue coloring, in most cases, despite of its high cost. If the low cost Ni-doped willemite blue pigments supplies for them with stable and multiple shades of blue pigment, using NiO at high temperature, it would provide various blues for ceramic wares.