• Title/Summary/Keyword: IR Intensity

Search Result 286, Processing Time 0.024 seconds

Expression of Vascular Endothelial Growth Factor Protein in Astrocytic Tumors (성상세포종에서 혈관내피세포 성장인자의 발현)

  • Park, Se-Hyuck;Chang, In-Bok;Kim, Chang-Hyun;Cho, Young-Jun;Cho, Byung-Moon;Shin, Dong-Ik;Oh, Sae-Moon;Kim, Duk-Whan;Nam, Eun-Sook
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.6
    • /
    • pp.683-687
    • /
    • 2001
  • Objective : Angiogenesis, the proliferation of capillary endothelial cells, is a vital component in the development, progression, and metastasis of many human tumors. Vascular endothelial growth factor(VEGF) is an endothelial cell-specific mitogen and induces angiogenesis and vascular permeability. The features of glioblastoma, distinct from low grade astrocytomas, are the presence of necroses and vascular endothelial proliferation. In this study, we investigated VEGF expression in the different grades of astrocytomas and determined whether VEGF expression correlates with development of glioblastoma and progression of astrocytomas. Patients and Methods : Forty seven patients with astrocytic tumors(24 males and 23 females), aged 3 to 65 years, were evaluated. Immunohistochemical staining was carried out using labelled streptavidin biotin method and primary antibody was a antirabbit polyclonal Ab against N-terminus region of VEGF165(Oncogene research product, MA, USA). Immunoreactivity(IR) was classified into no IR(absent or a trace of stain), moderate IR and intense IR by level of staining amount and intensity. Results : Six pilocytic astrocytomas showed 3 no IR and 3 moderate IR, 10 astrocytomas showed 2 no IR, 6 moderate IR and 2 intense IR, 12 anaplastic astrocytomas showed I no IR, 7 moderate IR and 4 intense IR and 19 glioblastomas showed 1 no IR, 11 moderate IR and 7 intense IR. Immunoreactivity was significantly different between low and high grade of tumors but there was no significant difference between anaplastic astrocytomas and glioblastomas. Gemistocytic tumor cells represented the predominent VEGF-immunoreactive cell types, as compared with compactly-arranged small tumor cells. In glioblastomas VEGF IR was observed in both perinecrotic and vital tumor areas. Conclusion : VEGF seems to be a important angiogenic factor in anaplastic astrocytomas and glioblastomas and VEGF expression may contribute to neovascularization of human astrocytomas.

  • PDF

Changes in IR Spectra of Ambers with Accelerated Aging (가속열화 시 호박 IR 특성의 경시적 변화)

  • Park, Jongseo;Lim, Yujin
    • Journal of Conservation Science
    • /
    • v.28 no.3
    • /
    • pp.247-256
    • /
    • 2012
  • Amber has been used as gemstones and artifacts from the period of the Three Kingdoms or earlier, which are discovered in the process of excavation now. It is, however, very difficult to discuss the importing route and circulation of amber because there are no informations available on the provenance. In this study, we acquired the IR spectra of ambers originating from 5 different locations. We also monitored the change of characteristic IR peaks by artificially aging the ambers under heat, light and heat with oxygen, respectively. As the aging proceeded, the intensity of C=O band and O-H band increased, however, the bands related with C=C bond decreased. There needed some modifications in the discerning scheme because some peak disappeared with aging; yet, it was still possible to discern different ambers largely. Therefore, it is expected that the scheme can be used practically by appraising its applicability to the real amber relics excavated.

Analysis of Structure and Physical and Chemical Properties of the Carbonized Powder of Pine Wood (Pinus densiflora Sieb. et Zucc.) (II) - FT-IR, Raman - (가열처리 및 탄화처리 소나무재(Pinus densiflora) 목분의 구조 및 물리·화학적 특성(II) - FT-IR, Raman -)

  • Lee, In-Ja;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.52-57
    • /
    • 2008
  • In this study, the effects of carbonization temperature on the physico-chemical properties of porous wood charcoal are studied by FT-IR and Raman spectroscopies. IR studies showed that cellulose and hemicellulose are mostly decomposed in the precarbonization stage at $500^{\circ}C$, while the decomposition reaction of relatively more stable lignin lasts up to $700^{\circ}C$. Above $900^{\circ}C$, the peak at $1575cm^{-1}$ disappears and a new peak at $1630cm^{-1}$, which seems to be related to the new carbon deposit phase, is evolved. The results of Raman studies, which show the red-shift of D-band and the increase in the relative intensity of D- to G-band, indicate that the size of the crystalline becomes smaller with increasing the carbonization temperature.

Quantum Mechanical Investigation for the Structure and Vibrational Frequencies of Dimethyldioxirane (Dimethyldioxirane의 분자구조와 Vibrational Frequencies에 대한 양자역학적 고찰)

  • Kang, Chang Duk;Kim, Seung Joon
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 1998
  • The geometrical parameters, vibrational frequencies, and IR intensities of dimethyldioxirane had been investigated using high level ab initio quantum mechanical methods with various basis sets. The polarization function decreases C-O and C-C bond distances significantly and the electron correlation effect increases those bond lengths slightly, while other bond lengths and bond angles are relatively stable for basis set size and correlation effect. The experimental and other theoretical vibrational frequencies and IR intensities of dimethyldioxirane will be compared and discussed with our high level theoretical predictions.

  • PDF

The fabrication of bolometric IR detector for glucose concentration detection (글루코오스 농도 측정을 위한 볼로미터 타입의 적외선 센서 제작)

  • Choi, Ju-Chan;Jung, Ho;Park, Kun-Sik;Park, Jong-Moon;Koo, Jin-Gun;Kang, Jin-Yeong;Kong, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.250-255
    • /
    • 2008
  • A vanadium pentoxide ($V_2O_5$)-based bolometric infrared (IR) sensor has been designed and fabricated using micro electro mechanical systems (MEMS) technology for glucose detection and its resistive characteristics has been illustrated. The proposed bolometric infrared sensor is composed of the vanadium pentoxide array that shows superior temperature coefficient of resistance (TCR) and standard silicon micromachining compatibility. In order to achieve the best performance, deposited $V_2O_5$ thin film is optimized by adequate rapid thermal annealing (RTA) process. Annealed vanadium oxide thin film has demonstrated a linear characteristic and relatively high TCR value (${-4}%/^{\circ}C$). The resistance of vanadium oxide is changed by IR intensity based on glucose concentration.

FT-IR and X-Ray Diffraction Characterization of Melanoidins Formed from Glucose and Fructose with Amino Acid Enantiomers in the Maillard Reaction

  • Kim, Ji-Sang;Lee, Young-Soon
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.546-551
    • /
    • 2009
  • The objective of this study was to investigate Fourier transform infrared (FT-IR) spectrometry and the X-ray diffraction (XRD) characterization of melanoidins formed from glucose and fructose with amino acid enantiomers in the Maillard reaction. Before dialysis, FT-IR spectroscopy of all the samples showed that the characteristic absorption intensities appeared as a broad and intense band of the stretching vibration of the -OH group at 3,400/cm for a high pH. The absorption bands of the melanoidins sharply decreased in intensity after dialysis as compared to those before dialysis. In particular, the absorption bands at 992 and 575/cm disappeared. The XRD confirmed that the crystal structure of the melanoidins disappeared after dialysis and a new crystal structure was formed at 9 and $28^{\circ}$ ($2{\theta}$. In particular, broad diffraction peaks were formed in the $10-21^{\circ}$ ($2{\theta}$) range for a high pH, while other sharp diffraction peaks disappeared.

OES based PECVD Process Monitoring Accuracy Improvement by IR Background Signal Subtraction from Emission Signal (적외선 배경신호 처리를 통한 OES 기반 PECVD공정 모니터링 정확도 개선)

  • Lee, Jin Young;Seo, Seok Jun;Kim, Dae-Woong;Hur, Min;Lee, Jae-Ok;Kang, Woo Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2019
  • Optical emission spectroscopy is used to identify chemical species and monitor the changes of process results during the plasma process. However, plasma process monitoring or fault detection by using emission signal variation monitoring is vulnerable to background signal fluctuations. IR heaters are used in semiconductor manufacturing chambers where high temperature uniformity and fast response are required. During the process, the IR lamp output fluctuates to maintain a stable process temperature. This IR signal fluctuation reacts as a background signal fluctuation to the spectrometer. In this research, we evaluate the effect of infrared background signal fluctuation on plasma process monitoring and improve the plasma process monitoring accuracy by using simple infrared background signal subtraction method. The effect of infrared background signal fluctuation on plasma process monitoring was evaluated on $SiO_2$ PECVD process. Comparing the $SiO_2$ film thickness and the measured emission line intensity from the by-product molecules, the effect of infrared background signal on plasma process monitoring and the necessity of background signal subtraction method were confirmed.

A Study on the Best Applicationsof Infra-Red(IR) Sensors Mounted on the Unmanned Aerial Vehicles(UAV) in Agricultural Crops Field (무인기 탑재 열화상(IR) 센서의 농작물 대상 최적 활용 방안 연구)

  • Ho-Woong Shon;Tae-Hoon Kim;Hee-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1073-1082
    • /
    • 2023
  • Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.

Estimation of Refractive Index in MIR range from the Reflectance Measurements for IR Optics Materials (반사율 측정에 의한 적외선 광학재료의 중적외선 굴절률 추정)

  • Jin, Doo-han;Jeong, Kyung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.411-416
    • /
    • 2020
  • An optical arrangement has been set inside a photo-spectrometer to measure the reflectance of IR optics materials in mid IR range. The optical arrangement consists of equally spaced 4 gold coated full reflecting mirrors with the incidence angle of 45°. Baseline beam intensity IB has been measured while the beam proceeds through the 4 mirrors. Reflectance of a mirror has been estimated from the IB. And the beam intensity IS with the specimen in the optical path has been measured with the 4th mirror replaced with the specimen. Reflectance of the specimen has been estimated from the value of IS/IB. Then the estimated reflectance has been put in Fresnel equation relating reflectance and refractive index(RI) to estimate the RI of the material. Measurement has been made for sapphire, germanium, magnesium fluoride, and zinc sulfide. The estimated RI of the materials are closely matching with reference data and the maximum difference less than 2% over the wavelength range 3-5㎛ for all materials tested. As an FT-IR photo-spectrometer with a broadband wavelength infrared light source is used, this method has the advantage of measuring the refractive index at multiple wavelengths in a single measurement.

Properties of Black Walnut hull Extracts with Extractive Conditions (추출조건에 따른 호두외피추출물의 특성)

  • Kim, Ho-Jung
    • Fashion & Textile Research Journal
    • /
    • v.8 no.4
    • /
    • pp.465-470
    • /
    • 2006
  • Walnut hull is a by-product from the Walnut tree, used as natural dyestuff from ancient times. This study was done to examine the effects of extractive conditions on the properties of walnut hull extracts for making efficient use of the walnut hull as a natural colorant. Aqueous extracts of walnut hull were prepared at various extractive concentration, temperature and time. Then they were characterized using UV-Vis. Spectrophotometer, FT-IR Spectrometer, Prep Liquid Chromatography, and Energy dispersive X-ray spectrometer. The aqueous extracts have two absorbency peaks of UV-Vis. Spectrum, shoulder type peak in the range of 270-280 nm and broad type band around 420 nm. Intensity of absorbency is increased with increase of extraction concentration and time. However, Boiling temperature extraction method showed the most efficiency of all. Intensity of absorbency is also affected by extraction pH. The Prep LC examined two kinds of isolated colorant with different molecular weight. FT-IR spectra of hull extracts showed an absorption band around $3400cm^{-1}$, the peaks at $1700-1600cm^{-1}$, which are characteristic of aromatic compounds with unsaturated ketone and benzene ring. It showed that the extraction contained some mineral ions, such as K, Ca, Si, Mg.