• Title/Summary/Keyword: IR(Infrared) Sensor

Search Result 177, Processing Time 0.02 seconds

A Study on the Best Applicationsof Infra-Red(IR) Sensors Mounted on the Unmanned Aerial Vehicles(UAV) in Agricultural Crops Field (무인기 탑재 열화상(IR) 센서의 농작물 대상 최적 활용 방안 연구)

  • Ho-Woong Shon;Tae-Hoon Kim;Hee-Woo Lee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1073-1082
    • /
    • 2023
  • Thermal sensors, also called thermal infrared wavelength sensors, measure temperature based on the intensity of infrared signals that reach the sensor. The infrared signals recognized by the sensor include infrared wavelength(0.7~3.0㎛) and radiant infrared wavelength(3.0~100㎛). Infrared(IR) wavelengths are divided into five bands: near infrared(NIR), shortwave infrared(SWIR), midwave infrared(MWIR), longwave infrared(LWIR), and far infrared(FIR). Most thermal sensors use the LWIR to capture images. Thermal sensors measure the temperature of the target in a non-contact manner, and the data can be affected by the sensor's viewing angle between the target and the sensor, the amount of atmospheric water vapor (humidity), air temperature, and ground conditions. In this study, the characteristics of three thermal imaging sensor models that are widely used for observation using unmanned aerial vehicles were evaluated, and the optimal application field was determined.

Temperature Compensation of Nondispersive Infrared Gas Senor: Infrared Light Absorbance (비분산 적외선 가스 센서 온도 보상법: 적외선 흡수도)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.36-41
    • /
    • 2021
  • The motivation of this paper is to easily analyze the properties of nondispersive infrared gas sensor that has more than two different optical path length and to suggest the criterion and definition of infrared light absorbance in order to minimize the measurement errors. With the output voltage ratios and the normalized derivatives of infrared ray (IR) absorbance, when the normalized derivatives of IR absorbance decreases from 0.28 to 0.10, the lower and higher limits of errors were decreased from -5.62% and 2.39% to -4.27% and 2.78%. When the normalized derivatives of IR absorbance were 0.10, the output voltage could be partitioned into two regions with one exponential equation and the temperature compensation error was less than 5%.

Fabrication of Infrared Filters for Three-Dimensional CMOS Image Sensor Applications

  • Lee, Myung Bok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.341-344
    • /
    • 2017
  • Infrared (IR) filters were developed to implement integrated three-dimensional (3D) image sensors that are capable of obtaining both color image and depth information at the same time. The combination of light filters applicable to the 3D image sensor is composed of a modified IR cut filter mounted on the objective lens module and on-chip filters such as IR pass filters and color filters. The IR cut filters were fabricated by inorganic $SiO_2/TiO_2$ multilayered thin-film deposition using RF magnetron sputtering. On-chip IR pass filters were synthetized by dissolving various pigments and dyes in organic solvents and by subsequent patterning with photolithography. The fabrication process of the filters is fairly compatible with the complementary metal oxide semiconductor (CMOS) process. Thus, the IR cut filter and IR pass filter combined with conventional color filters are considered successfully applicable to 3D image sensors.

Infrared Light Absorbance: a New Method for Temperature Compensation in Nondispersive Infrared CO2 Gas Sensor

  • Yi, Seung Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.303-311
    • /
    • 2020
  • Nondispersive infrared CO2 gas sensor was developed after the simulation of optical cavity structure and assembling the optical components: IR source, concave reflectors, Fresnel lens, a hollow disk, and IR detectors. By placing a hollow disk in front of reference IR detector, the output voltages are almost constant value, near to 70.2 mV. The absorbance of IR light, Fa, shows the second order of polynomial according to ambient temperatures at 1,500 ppm. The differential output voltages and the absorbance of IR light give a higher accuracy in estimations of CO2 concentrations with less than ± 1.5 % errors. After implementing the parameters that are dependent upon the ambient temperatures in microcontroller unit (MCU), the measured CO2 concentrations show high accuracies (less than ± 1.0 %) from 281 K to 308 K and the time constant of developed sensor is about 58 sec at 301 K. Even though the estimation errors are relatively high at low concentration, the developed sensor is competitive to the commercial product with a high accuracy and the stability.

Non-dispersive infrared carbon dioxide sensor with an externally exposed optical cavity (광 도파관이 외부로 노출된 구조를 가지는 비분산적외선 이산화탄소 센서)

  • Jung, Dong Geon;Lee, Junyeop;Do, Nam Gon;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.456-460
    • /
    • 2021
  • In this study, a Non-Dispersive Infrared (NDIR) Carbon Dioxide (CO2) sensor with an externally exposed optical cavity is proposed for improving sensitivity. NDIR CO2 sensors with high performance must use a lamp-type infrared (IR) source with a strong IR intensity. However, a lamp-type IR source generates high thermal energy that induces thermal noise, interfering with the accuracy of the CO2 concentration measure. To solve this problem, the optical cavity of the NDIR CO2 sensor is exposed to quickly dissipate heat. As a result, the proposed NDIR CO2 sensor has a shorter warm-up time and a higher sensitivity compared to the conventional NDIR CO2 sensor.

Temperature Dependency of Non-dispersive Infrared Carbon Dioxide Gas Sensor by using Infrared Sensor for Compensation (보상용 적외선 센서를 사용한 비분산 적외선 이산화탄소 센서의 온도특성)

  • Yi, SeungHwan
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.124-130
    • /
    • 2016
  • NDIR $CO_2$ gas sensor was built with ASIC implemented thermopile sensor which included temperature sensor and unique elliptical waveguide structures in this paper. The temperature dependency of dual infrared sensor module ($CO_2$ and reference IR sensors) has been characterized and its output voltage characteristics according to the temperature and gas concentration were proposed for the first time. NDIR $CO_2$ gas and reference IR sensors showed linear output voltages according to the variation of ambient temperatures from 243 K to 333 K and their slopes were 14.2 mV/K and 8.8 mV/K, respectively. The output voltages of temperature sensor also presented a linear dependency according to the ambient temperature and could be described with V(T)=-3.191+0.0148T(V). The output voltage ratio between $CO_2$ and reference IR sensors revealed irrelevant to the changes of ambient temperatures and gave a constant value around 1.6255 with standard deviation 0.008 at 0 ppm. The output voltage of $CO_2$ gas sensor at zero ppm $CO_2$ gas consisted of two components; one is caused by the HPB (half pass-band) of IR filter and the other is attributed to the part of $CO_2$ absorption wavelength. The characteristics of output voltages of $CO_2$ gas sensor could be accurately modeled with three parameters which are dependent upon the ambient temperatures and represented small average error less than 1.5% with 5% standard deviation.

Gunnery Classification Method using Shape Feature of Profile and GMM (Profile 형태 특징과 GMM을 이용한 Gunnery 분류 기법)

  • Kim, Jae-Hyup;Park, Gyu-Hee;Jeong, Jun-Ho;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.5
    • /
    • pp.16-23
    • /
    • 2011
  • Muzzle flash based on gunnery is the target that has huge energy. So, gunnery target in a long range over xx km is distinguishable in the IR(infrared) images, on the other hand, is not distinguishable in the CCD images. In this paper, we propose the classification method of gunnery targets in a infrared images and in a long range. The energy from gunnery have an effect on varous pixel values in infrared images as a property of infrared image sensor, distance, and atmosphere, etc. For this reason, it is difficult to classify gunnery targets using pixel values in infrared images. In proposed method, we take the profile of pixel values using high performance infrared sensor, and classify gunnery targets using modeling GMM and shape of profile. we experiment on the proposed method with infrared images in the ground and aviation. In experimental result, the proposed method provides about 93% classification rate.

Silicon Prism-based NIR Spectrometer Utilizing MEMS Technology

  • Jung, Dong Geon;Son, Su Hee;Kwon, Sun Young;Lee, Jun Yeop;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.91-95
    • /
    • 2017
  • Recently, infrared (IR) spectrometers have been required in various fields such as environment, safety, mobile, automotive, and military. This IR dispersive sensor detection method of substances is widely used. In this study, we fabricated a silicon (Si) prism-based near infrared (NIR) spectrometer utilizing micro electro mechanical system (MEMS) technology. Si prism-based NIR spectrometer utilizing MEMS technology consists of upper, middle, and lower substrates. The upper substrate passes through the incident IR ray selectively. The middle substrate, acting as a prism, disperses and separates the incident IR beam. The lower substrate has an amorphous Si (a-Si)-based bolometer array to detect the IR spectrum. The fabricated Si prism-based NIR spectrometer utilizing MEMS technology has the advantage of a simple structure, easy fabrication steps, and a wide NIR region operating range.

Design and Analysis of Flame Signal Detection with the Combination of UV/IR Sensors (UV/IR센서 결합에 의한 불꽃 영상검출의 설계 및 분석)

  • Kang, Daeseok;Kim, Eunchong;Moon, Piljae;Sin, Wonho;Kang, Min-goo
    • Journal of Internet Computing and Services
    • /
    • v.14 no.2
    • /
    • pp.45-51
    • /
    • 2013
  • In this paper, the combination of ultraviolet and infrared sensors based design for flame signal detection algorithms was proposed with the application of light-wavelength from burning. And, the performance result of image detection was compared by an ultraviolet sensor, an infrared sensor, and the proposed dual-mode sensors(combination of ultraviolet and infrared sensors).

A Multi-Channel Gas Sensor Using Fabry-Perot Interferometer-Based Infrared Spectrometer

  • Choi, Ju Chan;Lee, June Kyoo;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.402-407
    • /
    • 2012
  • We report a Fabry-Perot interferometer (FPI)-based multi-channel micro-spectrometer used for multi-gas measurement in the spectral range of $3-5{\mu}m$ and its gas sensing performance. The fabricated infrared (IR) spectrometer consists of two parts: an FPI on the top side for selective IR filtering and a $V_2O_5$-based IR detector array on the bottom side for the detection of the filtered IR. Experimental results show that the FPI-based multi-channel gas sensor has reliability and selectivity for simultaneously detecting environmentally harmful gases such as $CH_4$, $CO_2$, $N_2O$ and CO in the spectral range of $3-5{\mu}m$. The fabricated FPI-based multi-channel gas sensor also demonstrated that a reliable and selective detection of gas concentrations ranging from 0 to 500 ppm is feasible. In addition, the electrical characteristics demonstrate a superior response performance in regards to the selectivity in the multi-target gases.