• Title/Summary/Keyword: IPN

Search Result 135, Processing Time 0.023 seconds

Morphology Formation and Application of Interpenetrating Polymer Network (IPN) Materials (Interpenetrating Polymer Network(IPN)의 모폴로지 형성과 그 응용)

  • Kim, Sung-Chul
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2005
  • Interpenetrating polymer network (PN) is a mixture of network polymers. The characteristics of IPN material is the control of morphology during the IPN synthesis. By controlling the relative kinetics of chemical reaction (as well as gellation) and phase separation, the morphology of IPN can be controlled to obtain materials with nano-scale domain and also the co-continuous phase. Other important advantage is the fact that the morphology is permanent due to the presence of the physical interlocking between the networks. The combination of hydrophilic polyurethane and hydrophobic polystyrene in IPN form provides enhanced blood compatibility due to the co-existence of the hydrophilic and hydrophobic domains in nano-scale on the surface. The reaction temperature, reaction pressure and the degree of crosslinking were varied during the IPN synthesis and the morphology and blood compatibility of the resulting IPN materials were studied.

Characteristics of Nylon6/Ionomer Semi IPN for Molded-In-Color Compound (나일론6/이오노머 Semi IPN의 몰드-인-칼라 수지 특성 연구)

  • Lee, Ja-Hun;Hwang, Jin-Taek;Kang, Ho-Jong
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.407-412
    • /
    • 2012
  • The characteristics of nylon6/ionomer semi interpenetrating networks (IPN) as a molded-in-color (MIC) compound had been studied, and comparison was made with nylon6/ionomer blends. Nylon6/ionomer semi IPN shows better homogeneity in phase morphology than nylon6/ionomer blend, and it caused better anti-scratching performance than the blend. This semi IPN structure resulted in lowered crystallization rate, increased melt viscosity and less temperature dependency of viscosity. As a result, we may expect the enhancement of melt processing characteristics in an injection molding process using nylon6/ionomer semi IPN as a MIC compound.

Dynamic Mechanical Properties of Natural Rubber/Polystyrene IPNs (천연고무/폴리스티렌 IPN의 동적기계적 성질)

  • Do, In-Hwan;Kim, Byeong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.6 no.2
    • /
    • pp.197-203
    • /
    • 1996
  • 천연고무/폴리스티렌계 semi- 및 full-IPN의 동적성질을 IPN 조성과 가교도의 함수로 조사하였고, 23$^{\circ}C$에서의 탄성율을 선택하여 복합모델과 비교하였다. Full-IPN이 semi-IPN에 비해 상분리를 억제시키는 효과가 컸으며, 23$^{\circ}C$에서의 탄성율에서도 Davies 모델에 더 근접하였다. Coran-Patel 모델해석에서, 상전이의 중심이 되는 조성은 full-IPN의 경우 $\Phi$2=0.75-0.8이었다.

  • PDF

Pervaporation Process for Water/Ethanol Mixture through IPN Membranes

  • Jeon, Eun-Jin;Kim, Sung-Chul
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.04a
    • /
    • pp.52-53
    • /
    • 1993
  • The pervaporation behavior of EtOH/Water mixture through IPN membranes was predicted in this study. The pervaporation characteristics of single polymer membrane were modeled according to the "six-coefficients model" proposed by Brun. In the case of the IPN membrane, two models were proposed according to the phase structure of the IPN. For a uniphase membrane with no phase separation, the compositional average of the single polymer membrane was used. in the case of the phase separated IPN's two cases existed. The first was the island and sea model: in which one phase was continuous and the other was dispersed. The second was the co-continuous model where two continuous phases existed. For these cases, the permeation rate and the separation factor of the IPN membrane were calculated using the experimental sorption data and the cornponent polymer properties. Comparison with the experimental data indicated that these models could be used to predict the performances of IPN membranes depending on the morphology of the IPN.

  • PDF

Preparation and Oxygen Permeability of True-IPN's based on Silicone Rubber and Polystyrene (실리콘 고무와 폴리스틸렌을 이용한 True-IPNs의 제조 및 산소투과 특성)

  • Kim, Jun-Hyun;Byun, Hong-Sik
    • Membrane Journal
    • /
    • v.10 no.4
    • /
    • pp.205-212
    • /
    • 2000
  • The true-lPN's based on silicone rubber(SR)rrubbery polymer) and polystyrenc(PS)(glass polymer) were prepared by using the sequential IP!\' method_ The characteristic of permeability of oxygen/nitrogen was investigated with the control of the amount of PSOO-70 wt%) in the true-lPN, As a results of fTlR and N1Vm. the SRIPS membrane was synthesised successfully with the IPN synthetic method, Thermal analysis resulls indicated that the degree of mixing of IPN increased with increase of the amount of PS in the IPN. Regarding the characteristic of gas permeability, the membrane showed a trend of decrease in oxygen permeability as the PS content increased, The oxygen permeability of membrane having 50 wt% of PS. however, increased momentarily, Selectivity, meanwhile, increased slightly as the contents of I'S increased. However, the maximum value of oxygen selectivity, which is 20.6% enhanced Value, was obtained with the membrane containing 50 wt% of PS. This can be explained that the behavior of lPN, i.e. mutual assistance, is pronounced in the membrane having 50 wt% of PS.

  • PDF

The Effect of Wettability and Protein Adsorption of Contact Lens by Alginic Acid (알긴산에 의한 콘택트렌즈의 습윤성과 단백질 흡착 효과)

  • Ko, Na Young;Lee, Kyung Mun;Lee, Hyun Mee
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.6
    • /
    • pp.352-358
    • /
    • 2017
  • The addition of alginic acid, a natural polysaccharide, to improve the wettability and the reduction of protein adsorption of hydrogel contact lenses. Hydrogel contact lenses were manufactured with various monomers such as 2-methacryloyloxyethyl phosphorylcholine (MPC) and NVP (N-Vinyl-2-pyrrolidone). Alginic acid was added by by the initial mixing method and the interpenetrating polymer networks(IPN) method. Properties of contact lens such as contact angle, oxygen permeability, and protein adsorption amount were evaluated. The oxygen permeability and wettability of the IPN-treated alginate samples were higher than those of the samples that were not treated with IPN. The physical properties were improved as the concentration of IPN-treated alginic acid increased. Protein adsorption decreased by the addition of alginic acid and further decreased with IPN. In particular, contact lenses containing MPC and NVP significantly decreased protein adsorption. Therefore, the effect of alginate on the functional improvement of contact lens was confirmed.

A Study on the Enhancement of Oxygen Permeability by Silicone in Polymeric Membranes (고분자분리막의 실리콘에 의한 산소투과향상에 관한 연구)

  • 변홍식
    • Membrane Journal
    • /
    • v.9 no.3
    • /
    • pp.151-156
    • /
    • 1999
  • Silicone was used in this study to enhance the oxygene permeability of gas separation membranes. PMP and PMMA were used to prepare the copolymers and IPN membranes, respectively. In the case of copolymers, there were two methodsCswelling and solvent evaporation) in this study and it was revealed that this preparation method affected the oxygene permeability. It was also shown that the IPN method brought the enhacement of oxygen permeability and slight decrease of separation factor. Regarding oxygen permeability 10 wt% of PMMA was the best composition of IPN membrane.

  • PDF

Developmnet of Vibration and Impact Noise Damping Wood-based Composites (II) -The Influence of the Degree of Crosslinking on the Damping Properties of Interpenetrating Polymer Networks- (진동.충격음 흡수성능을 지니는 목질계 복합재료의 개발(II) -가교밀도가 상호침투망목고분자의 진동흡수성능에 미치는 영향-)

  • 이현종
    • Journal of Korea Foresty Energy
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 1998
  • In the search for broadband damping composites, it is desirable to have polymers with a broad and high loss region, covering the entire temperature and frequency range of interest. Interpenetrating polymer networks, IPN's, are materials composed of two or more crosslinked polymers intimately and irrevocably interwinded. The resulting distribution of microenviron-ments can result in a materials with a high mechanical loss broad end over that of either polymer component alone. In this study, several series of copolymer, crosslinked copolymer and copolymer/copolymer IPN's were synthesized for possible use as broadband damping materials. Then their dynamic tensile properties were measured and compared with the damping properties of sandwich composites. Dynamic mechanical analysis showed that the temperature of loss peak may be varied over a wide temperature range with formulation. The compatibility of IPN`s was depended on the compatibility of A and B polymers as well as crosslink density. The damping factor(tan ${\delta}_c$) of composites became greater when a polymer of approximate storage module(E`) range of 5X10$^7$ to 10$^9$ dyne/cm$^2$ and large tan ${\delta}$ at the same time was used. The damping properities of poly (2-EHA80-co-St20)/poly(2-EHA20-co-St80) IPN`s crosslinked with 3%-DEGDM were relatively better over a broad temperature range.

  • PDF

Preparation of IPN-type Polyelectrolyte Films Attached to the Electrode Surface and Their Humidity-Sensitive Properties (전극 표면에 부착된 IPN 형태의 전해질 고분자의 제조 및 그들의 감습특성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.565-573
    • /
    • 2010
  • Copoly(2-(dimethylamino)ethyl methacrylate)(DAEMA)/butyl acrylate (BA) and copoly(methyl methacrylate)(MMA)/BA/2-(cinnamoyloxy)ethyl methacryate (CEMA), which were cross-linked with dibromoalkane and UV irradiation, respectively, were prepared for the precursors of interpenetrating polymer network (IPN) humidity-sensitive films. 3-(Triethoxysilyl)propyl cinnamate (TESPC) was used as a surface-pretreating agent for the attachment of IPN-polyelectrolyte to the electrode surface by UV irradiation. Humidity sensitive polymeric thin films with an IPN structure were prepared by crosslinking reactions of copoly(DAEMA/BA) with 1,4-dibromobutane (DBB) and copoly(MMA/BA/CEMA) by UV-irradiation. The anchoring of an IPN-polyelectrolyte into the substrate was carried out via the photochemical $[2{\pi}+2{\pi}]$ cycloaddition. The resulting humidity sensors showed a high sensitivity in the range of 20~95%RH and a small hysteresis (<1.5%RH). The response time for adsorption and desorption process at 33~94%RH was 48 and 65 s, respectively, indicating a fast response. The effects of the concentration of copolymers, molar ratio of crosslinking agents and time of the precursor solution for dip-coating on their humidity sensitive properties including water durability were investigated.