• 제목/요약/키워드: IPMSM drive

검색결과 163건 처리시간 0.035초

150kW급 IPMSM의 영구자석 사용량 저감과 유기전압 만족를 위한 회전자 형상 최적설계 (Optimal Rotor Shape Design of 150kW-class IPMSM for Reduce Usage of Permanent Magnet and Satisfy Induced Voltage)

  • 정태철;김원호;장익상;김미정;이기덕;이재준;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.991-992
    • /
    • 2011
  • This study was designed to satisfy induced voltage limits considering drive's specifications and optimize design reducing usage of permanent magnet, by increasing salient poles ratio, when designing 150kW IPMSM. In order to achieve these objectives, design plans were determined, based on Ld and Lq parameters of a basic design model, according to changes in salient poles ratio and flux linkage using IPMSM's voltage equation and torque equation and then, required torque and induced voltage were analyzed using Sensitivity Analysis. Based on analysis data, the optimum design was performed and basic model's characteristics were compared to final model's through Gradient-Based Optimization Technique.

  • PDF

Development of Traction Unit for 2-motor Driven Electric Vehicle

  • Park, Jung-Woo;Koo, Dae-Hyun;Kim, Jong-Moo;Kim, Heung-Geun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.950-954
    • /
    • 1998
  • This paper describes a development of traction unit for 2-motor driven electric vehicle (EV). The traction unit is consisted with an interior permanent magnet synchronous motor (IPMSM), a reduction gear and an inverter for electric vehicle that is driven by 2 motors without differential gear. For traction unit, prototype IPMSM and inverter have been developed. The IPMSM was designed by CAD program that was developed with both equivalent circuit method and FEM. Also the inverter was developed to drive 2 motors with 6 legs IGBT switches in a control board. The vector control algorithm was implemented with maximum torque control method in the constant torque region and field weakening control method in the constant power region considering inverter capacity. To verify that the traction unit is more high efficiency and has more high power density than a traction unit with induction motor with the same power, we would like to show the results about the design and analysis of the IPMSM and the experiment results about the traction unit.

  • PDF

신경회로망을 이용한 IPMSM 드라이브의 온라인 파라미터 추정 (On-line Parameter Estimation of IPMSM Drive using Neural Network)

  • 박기태;최정식;고재섭;이정호;김종관;박병상;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.761-762
    • /
    • 2006
  • A number of techniques have been developed for estimation of speed or position in motor drives. The accuracy of these techniques is affected by the variation of motor parameters such as the stator resistance, stator inductance or torque constant. This paper is proposed a neural network based estimator for torque and stator resistance in IPMSM Drives. The neural weights are initially chosen randomly and a model reference algorithm adjusts those weights to give the optimum estimations. The neural network estimator is able to track the varying parameters quite accurately at different speeds with consistent performance. The neural network parameter estimator has been applied to slot and flux linkage torque ripple minimization of the IPMSM. The validity of the proposed parameter estimator is confirmed by the operating characteristics controlled by neural networks control.

  • PDF

IPMSM의 센서리스 운전을 위한 확장 칼만 필터 설계 (Extended Kalman Filter Design for Sensorless Control of IPMSM Drive)

  • 전용호;조민호
    • 한국전자통신학회논문지
    • /
    • 제8권11호
    • /
    • pp.1681-1690
    • /
    • 2013
  • 본 논문은 IPMSM(Interior Permanent Magnet Synchronous Motor)의 센서리스 운전을 위해 확장 칼만 필터를 기반으로 하는 속도와 위치 추정기의 설계방법을 제안한다. 제안된 방법은 상태 추정의 정밀도를 향상시키기 위해서 시스템 모델의 상태추정구간을 더욱 세분화하여 나누고, 세분화한 각 구간을 테일러급수 전개하여 일차항만 사용하여 추정하였다. 제안된 상태 추정기는 2차 확장칼만필터에 비해 사전추정의 연산의 양을 크게 하지 않고, 상태추정의 정밀도가 증가함을 시뮬레이션을 통해 보일 수 있었다.

특성 전류의 변화를 반영한 매입형 영구자석 동기전동기의 약계자 제어 알고리즘 개발 (Flux-Weakening control algorithm for an IPMSM drive reflecting the Characteristic Current Variations)

  • 한정현;이재석
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.426-431
    • /
    • 2024
  • 본 논문은 특성 전류의 크기를 반영한 PMSM(Permanent Magnet Synchronous Motor) 드라이브의 약계자 제어 알고리즘을 제시한다. 변화한 영구자석 쇄교 자석의 비율을 계산하기 위해 고정자 쇄교 자속 관측기를 활용하였다. 계산된 영구자석 쇄교 자속의 비율로 특성 전류의 크기가 간접적으로 계산된다. 계산된 영구자석 쇄교 자속은 3D Look-up talbe(LUT)를 통해 IPMSM(Interior Permanent Magnet Synchronous Motor)의 MTPV(Maximum Torque Per Voltage)제어 사용 여부를 결정한다. 제안된 약계자 제어 방식은 시뮬레이션을 통해 검증된다.

Wide Speed Direct Torque and Flux Controlled IPM Synchronous Motor Drive Using a Combined Adaptive Sliding Mode Observer and HF Signal Injection

  • Foo, Gilbert;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • 제9권4호
    • /
    • pp.582-592
    • /
    • 2009
  • This paper proposes a new speed sensorless direct torque and flux controlled interior permanent magnet synchronous motor (IPMSM) drive. Closed-loop control of both the torque and stator flux linkage are achieved by using two proportional-integral (PI) controllers. The reference voltage vectors are generated by a SVM unit. The drive uses an adaptive sliding mode observer for joint stator flux and rotor speed estimation. Global asymptotic stability of the observer is achieved via Lyapunov analysis. At low speeds, the observer is combined with the high frequency signal injection technique for stable operation down to standstill. Hence, the sensorless drive is capable of exhibiting high dynamic and steady-state performances over a wide speed range. The operating range of the direct torque and flux controlled (DTFC) drive is extended into the high speed region by incorporating field weakening. Experimental results confirm the effectiveness of the proposed method.

Minimization of Losses in Permanent Magnet Synchronous Motors Using Neural Network

  • Eskander, Mona N.
    • Journal of Power Electronics
    • /
    • 제2권3호
    • /
    • pp.220-229
    • /
    • 2002
  • In this paper, maximum efficiency operation of two types of permanent magnet synchronous motor drives, namely; surface type permanent magnet synchronous machine (SPMSM) and interior type permanent magnet synchronous motor(IPMSM), are investigated. The efficiency of both drives is maximized by minimizing copper and iron losses. Loss minimization is implemented using flux weakening. A neural network controller (NNC) is designed for each drive, to achieve loss minimization at difffrent speeds and load torque values. Data for training the NNC are obtained through off-line simulations of SPMSM and IPMSM at difffrent operating conditions. Accuracy and fast response of each NNC is proved by applying sudden changes in speed and load and tracking the UC output. The drives'efHciency obtained by flux weakening is compared with the efficiency obtained when setting the d-axis current component to zero, while varying the angle of advance "$\vartheta$" of the PWM inverter supplying the PMSM drive. Equal efficiencies are obtained at diffErent values of $\vartheta$, derived to be function of speed and load torque. A NN is also designed, and trained to vary $\vartheta$ following the derived control law. The accuracy and fast response of the NN controller is also proved.so proved.

독립 구동형 전기자동차의 추진 시스템 제어 기법 (A Traction System Control Method for 2 Motor Driven Electric Vehicle)

  • 박정우;하회두;김흥근
    • 전력전자학회논문지
    • /
    • 제4권4호
    • /
    • pp.357-367
    • /
    • 1999
  • 매입형 영구자석 동기전동기와 인버터, 그리고 추진제어기로 구성된 추진시스템을 갖는 독립 구동형 전기자동차에 대하여 파라미터 변동특성을 반영하는 전동기 제어기법과 주행특성을 개선한 새로운 추진제어기 기법을 제시하였다. 기존의 방식과는 다르게 전동기의 등가파라미터인{{{{ { L}_{d } }} 와{{{{ { L}_{q } }} 의 변동을 전류의 크기뿐만 아니라 전류 위상각의 관점에서 고려하였으며, 해석적인 방법으로 전 영역에 대한 변동 곡선을 제시하였다. 그리고{{{{ { L}_{d } }}와 {{{{ { L}_{q } }}에 대한 변동을 신경회로망을 이용하여 추정기를 구성한 후 신경회로망 추정기를 갖는 매입형 영구자석 동기 전동기용 벡터제어 기법을 제시하였다. 또한, 추진제어기는 토크분배 기능과 토크약화제어 기능을 구비하도록 만들어졌으며, 선회 조종성과 슬립율이 안정 영역 내에서 운전 되도록 개선된 추진 제어기를 제시하였다. 제안된 제어기의 동특성을 실험과 모의 실험을 통하여 검증하였다.

  • PDF

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Improved FOC of IPMSM using Finite-state Model Predictive Current Control for EV

  • Won, Il-Kuen;Hwang, Jun-Ha;Kim, Do-Yun;Choo, Kyoung-Min;Lee, Soon-Ryung;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1851-1863
    • /
    • 2017
  • Interior permanent magnet synchronous motor (IPMSM) is most commonly used in the automotive industry as a traction motor for electric vehicle (EV). In electric vehicle, the torque output rapidly changes according to the operation of the accelerator and the braking of the driver. The transient torques are thus generated very frequently in accordance with the variable speed control of the driver. Therefore, in this paper, a method for improving the torque response in the transient states of IPMSM is proposed. In order to complement the disadvantages of the conventional PI current controller in the field oriented control (FOC), the finite-state model predictive current control and 2D-LUT is applied to improve the torque response at the torque transient period. Simulation and experiment results are given to verify the reliability of the proposed method.