• Title/Summary/Keyword: IPM(Interior permanent magnet motor)

Search Result 81, Processing Time 0.054 seconds

Sensorless Control for a Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시 무효전력을 이용한 IPM모터의 센서리스 제어)

  • Joung, Woo-Taik;Kang, Hyung-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1447-1449
    • /
    • 2005
  • An interior permanent magnet synchronous motor(IPMSM) is receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. This paper presents algorithm for speed sensorless vector control based on an Instantaneous Reactive Power. Effectiveness or algorithm is confirmed by the experiments.

  • PDF

Characteristic Analysis of the Linear Switched Reluctance Motor with Interior Permanent Magnet according to Magnetization of Permanent Magnet (영구자석 삽입형 직선형 스위치드 릴럭턴스 전동기의 전자기 특성 해석)

  • Jang, Seok-Myeong;Kim, Jin-Soon;Park, Ji-Hoon;Lee, Un-Ho;Goo, Cheol-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.806_807
    • /
    • 2009
  • This paper deals with characteristic analysis on the Linear Switched Reluctance Motor with Interior Permanent Magnet (LSRM-IPM) according to the magnetization of permanent magnet. The governing equations and force equations are derived using analytical method for the suggested models. This paper compares the force characteristics in terms of three cases considering the position and size of permanent magnet.

  • PDF

Design Space Methodology and Its Application in Interior Permanent Magnet Motor Design

  • Fan, Tao;Li, Qi;Wen, Xuhui;Xu, Longya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.303-311
    • /
    • 2012
  • An innovative interpretation of the per-unit interior permanent magnet (IPM) machine model known as Design Space is presented in this paper. Based on the proposed Design Space formulation, an effective computation method to predict IPM machine performance factors, such as the current and power factor in a full range of speeds, is proposed. A systematic methodology is summarized, which translates the full speed range machine design procedure into the region determination on the so-called Design Space. The effect of dc-link voltage is also analyzed in a similar manner with the current and power factor. A series of IPM motors have been designed, and a preferred motor is selected with the help of the proposed Design Space Methodology (DSM), which has the best tradeoff between the nominal voltage and the dropped voltage condition. Experiment results show that the selected motor satisfies the machine requirements and all the design constrains, such as the current and back-EMF limitations.

Characteristic Analysis of BLDC Motor for Vehicle Compressor Based on High Voltage (고전압 기반의 자동차 압축기용 BLDC 모터의 특성 해석)

  • Kim, Byeong-Woo;Cho, Hyun-Dock;Lee, Do-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.44-51
    • /
    • 2008
  • The performance design and analysis of an electric motor for vehicles is very complicated due to the variety of parameters. This paper presents the design of the BLDC motor for electric air compressor in high voltage(42V) system and compares with the characteristics of IPM, SPM type BLDC motor. Futher, optimal design for the electric motor has been carried out using Equivalent Magnetic Circuit and FEM Modelling. By analyzing the design results, it is found that design parameters for BLDC motor provided an useful tool for vehicles motor design.

The Rotor Shape Design of IPM Type BLDC Motor for Minimization of Vibration (IPM type BLDC 전동기의 진동저감을 위한 회전자 형상설계)

  • Reu, Jin-Wook;Kang, Gyu-Hong;Hur, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.895_896
    • /
    • 2009
  • this paper presents a rotor shape optimization of interior type permanent magnet (IPM) motor for vibration minimization. the vibration of permanent magnet motor is generated by cogging torque, radial force and commutation torque ripple which are electromagnetic source of vibration. In order to minimize the vibration, the optimal notches are put on the rotor pole face and the arc type pole face is applied. The variations of cogging torque and radial force of each model vibration frequency are computation by finite element method (FEM) and the validity of the analysis and rotor shape design is confirmed by vibration experiments.

  • PDF

Study on Noise and Vibration in the Interior Permanent Magnet Motor (IPM 전동기의 진동소음에 대한 연구)

  • Lee, Sang-Ho;Kim, Ji-Min;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.853_854
    • /
    • 2009
  • This paper deals with the analysis of noise sources in interior permanent magnet (IPM) motor considering the natural frequencies of stator and electromagnetic forces. In order to analyze the noise generated from the vibration of stator, measured acceleration of stator is compared with calculated acceleration using electromagnetic forces and harmonic analysis.

  • PDF

Electromagnetic Performance improvement and Rib thickness Reduction by making a hole on Interior Permanent Magnet Synchronous Motor (IPMSM의 Hole에 의한 Rib의 두께 감소와 전자기적 성능 향상)

  • Lee, Tae-Geun;Kim, Do-Jin;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.867_868
    • /
    • 2009
  • Interior permanent magnet synchronous motor [IPMSM] which has high power density is applied to motor for Hybrid electric vehicle[HEV], Electric vehicle[EV], Fuel cell electric vehicle[FCEV] and electric home appliances. In order to improve efficiency performance of IPMSM, this paper presented a study by making a hole around air barrier. Because concentrated rib stress is distributed by suitable hole, the hole can reduce rib thickness of IPM rotor. And it can help decrease PM[Permanent Magnet] leakage flux. Saliency ratio($L_q/L_d$) is also increased by magnetic circuit change. For this study, structure analysis of rotor is performed by Ansys program.

  • PDF

Analysis of Electromagnetic Vibration Sources in 100kW Interior Permanent Magnet Motor for Ship Anti-heeling Pump Considering Eccentricity (선박 자세안정성 향상을 위한 Anti-heeling Pump용 100kW급 IPM 전동기의 편심에 의한 전자기 가진력 분석)

  • Lee, Sun-Kwon;Kang, Gyu-Hong;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.12
    • /
    • pp.2230-2235
    • /
    • 2011
  • The purpose of this paper is to provide the unbalanced magnetic force and vibration mode comparison between two large interior permanent magnet machines(IPM) with different pole-slot combination considering stator and rotor eccentricity. Due to the punching tolerance, the mixed eccentricity of air-gap is inevitable. It will generate the asymmetric magnetic flux density in air-gap, which makes the unbalanced magnetic pull and vibration. The study is focused on the unbalanced magnetic force and their harmonic components according to eccentricity conditions such as static, dynamic and mixed. When the high vibration is produced especially resonance, the obtained results provide clues what eccentricity condition occurs in the machine.

Improved Flux and Torque Estimators of a Direct Torque Controlled Interior PM Machine with Compensations for Dead-time Effects and Forward Voltage Drops

  • Sayeef, Saad;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.438-446
    • /
    • 2009
  • The performance of direct torque controlled (DTC) interior permanent magnet (IPM) machines is poor at low speeds due to a few reasons, namely limited accuracy of stator voltage acquisition and the presence of offset and drift components in the acquired signals. Due to factors such as forward voltage drop across switching devices in the three phase inverter and dead-time of the devices, the voltage across the machine terminals differ from the reference voltage vector used to estimate stator flux and electromagnetic torque. This can lead to instability of the IPM drive during low speed operation. Compensation schemes for forward voltage drops and dead-time are proposed and implemented in real-time control, resulting in improved performance of the space vector modulated DTC IPM drive, especially at low speeds. No additional hardware is required for these compensators.

The study on the vibration characteristic of IPM motor according to the notch design (Notch 설계에 따른 매입형영구자석형 전동기의 진동특성 고찰)

  • Lee, Seung-Hoon;Ahn, Ho-Jin;Kang, Gyu-Hong;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.47-49
    • /
    • 2008
  • This paper presents the vibration characteristic of interior type permanent magnet (IPM) motor according to rotor design. In the design methods, the optimal notchs are put on the rotor pole face, which have an effect on variation of permanent magnet (PM) shape or residual flux density of PM. Through the space harmonics field analysis, the positions of notch are found and the optimal shapes of notch are decided by using Finite Element Method (FEM). The validity of the proposed method is confirmed with experiments. Therefore, the vibration, starting current and efficiency of IPM is measured by experiment.

  • PDF