• Title/Summary/Keyword: IPB

Search Result 131, Processing Time 0.023 seconds

In Vitro Characterization of Lactic Acid Bacteria from Indonesian Kefir Grains as Probiotics with Cholesterol-Lowering Effect

  • Yusuf, Dandy;Nuraida, Lilis;Dewanti-Hariyadi, Ratih;Hunaefi, Dase
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.5
    • /
    • pp.726-732
    • /
    • 2020
  • Indonesian kefir grains are potential sources of lactic acid bacteria (LAB) that may act as probiotics with specific functional properties. In this study we explored the potential of the probiotic and cholesterol-lowering effect of LAB isolated from Indonesian kefir grains obtained from Bogor, Bandung, Jakarta, and Yogyakarta. The results revealed that 10 isolates showed considerable survivability at low pH and bile salt with total cell reduction of ~3 log colony-forming units per milliliter after exposure to pH 2.5 and 0.5% (w/v) bile salt for 1 and 3 h, respectively. All strains exhibited strong antimicrobial activities against pathogenic bacteria and were sensitive to a wide spectrum of antibiotics but exhibited weak bile salt hydrolase activity. Identification based on 16S RNA suggested that nine isolates were Lactobacillus kefiri and one was Lactobacillus rhamnosus. The ability of the isolates to reduce cholesterol from the media varied, ranging from 22.08% to 68.75% with the highest reduction shown by L. kefiri JK17. The ability to remove cholesterol from the media decreased greatly in resting and dead cells, ranging from 14.58% to 22.08% in resting cells and from 7.89% to 18.17% in dead cells. It can be concluded that Indonesian kefir grains contain LAB potentially acting as probiotics capable of reducing cholesterol. The cholesterol-lowering effect especially occurs when the cells are metabolically active.

Use of biofilter as pre-treatment of polluted river water for drinking water supply

  • Suprihatin, Suprihatin;Cahyaputri, Bunga;Romli, Muhammad;Yani, Mohamad
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.203-209
    • /
    • 2017
  • Innovations in the biofiltration process can provide effective solutions to overcome crucial water pollution problems. The elimination of pollutants is a result of the combined effects of biological oxidation, adsorption and filtration processes. This research aims to evaluate the performance of quartz sand biofiltration for removing total suspended solids, turbidity, color, organic matter, and ammonium from polluted river water and develop an empirical model for designing quartz sand biofilters for the treatment of polluted river water. Experiments were conducted using two biofilter units filled with quartz sand as filter media. A set of experiments were performed to evaluate the effect of hydraulic retention time on biofilter performance in removing water contaminants. The kinetics of organic matter removal were also determined to describe the performance of the biofilter. The results show that biofiltration can significantly remove river water pollutants. Removal efficiency depends on the applied hydraulic retention time. At a hydraulic retention time of two hours, removal efficiencies of total organics, ammonium and total suspended solids were up to 78%, 82%, and 91%, respectively. A model for designing quartz sand biofiltration has been developed from the experimental data.

Antimalarial Activity and Phytochemical Profile of Ethanolic and Aqueous Extracts of Bidara Laut (Strychnos ligustrina Blum) Wood

  • MANURUNG, Harisyah;SARI, Rita Kartika;SYAFII, Wasrin;CAHYANINGSIH, Umi;EKASARI, Wiwied
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.587-596
    • /
    • 2019
  • This study aimed to determine the antimalarial effect of the Strychnos ligustrina (SLW) wood extracts and to analyze its phytochemicals. The SLW powder samples were macerated with 100% ethanol (E100), 75% ethanol (E75), 50% ethanol (E50), 25% ethanol (E25), and aqueous (A100). The extracts were analyzed by LCMS/MS, and its in-vitro antimalarial activity was tested with Plasmodium falciparum. The results showed that the extract yields of E100, E75, E50, E25, and A100 were 4.3, 5.2, 5.3, 4.7, and 3.6%, respectively. The antimalarial activities of the A100, E25, E50, and E75 extracts were classified as active with $IC_{50}$ values of 38.6, 42.6, 42.9, and $43.7{\mu}g/mL$, respectively. But, the antimalarial activity of the E100 extract was classified as slightly active with $IC_{50}$ values of $87.4{\mu}g/mL$. The dominant compounds contained in the extracts of A100, E25, E50, E75, and E100 was the alkaloid compound, namely brucine with relative concentrations of 24.96, 24.55, 21.33, 11.79, and 11.62%, respectively.

Physicomechanical Properties Enhancement of Fast-Growing Wood Impregnated with Wood Vinegar Animal Adhesive

  • Efrida BASRI;SAEFUDIN;Mahdi MUBAROK;Wayan DARMAWAN;Jamal BALFAS;Yelin ADALINA;Yusuf Sudo HADI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.542-554
    • /
    • 2023
  • This study is a continuation of our previous work, which focused on the resistance of jabon wood to termites after impregnation with wood vinegar (WV) and animal-based adhesive (kak). This paper presents the physicomechanical properties of fast-growing jabon wood impregnated with kak at two concentrations (8% and 10%) in wood vinegar or water as a solvent with and without 4% borax. The physical properties of the impregnation solution, that is, viscosity, density, pH, and solid content, were evaluated according to SNI 06-4567-1998. Some physical parameters, such as weight percent gain (WPG), density, water uptake, anti-swelling efficiency (ASE), crystallinity, and mechanical properties, i.e., modulus of elasticity (MOE), modulus of rupture (MOR), and compression strength parallel to the grain (CS), of the impregnated wood were determined. Based on these results, wood impregnated using a mixture of kak in WV presented better physical (increased WPG, density, dimensional stability, and crystallinity) and mechanical (increased MOE/MOR and compression strength) properties than wood impregnated with a water solvent or untreated wood. The wood impregnated using WV and water solvent improved the physical and mechanical properties. The density of the wood increased by 44%-58% and 32%-47%, ASE radial-tangential increased by 38%-45%; 15%-28% after 24 h of water immersion, crystallinity increased by 59%-74%; 36%, MOE increased by 46%-57%; 28%-31%, MOR increased by 29%-34%; 14%-27%, and compression strength increased by 40%-76%; 38%-72% values to untreated wood.

Mooring chain fatigue analysis of a deep draft semi-submersible platform in central Gulf of Mexico

  • Jun Zou
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.171-210
    • /
    • 2024
  • This paper focuses on the rigorous and holistic fatigue analysis of mooring chains for a deep draft semi-submersible platform in the challenging environment of the central Gulf of Mexico (GoM). Known for severe hurricanes and strong loop/eddy currents, this region significantly impacts offshore structures and their mooring systems, necessitating robust designs capable of withstanding extreme wind, wave and current conditions. Wave scatter and current bin diagrams are utilized to assess the probabilistic distribution of waves and currents, crucial for calculating mooring chain fatigue. The study evaluates the effects of Vortex Induced Motion (VIM), Out-of-Plane-Bending (OPB), and In-Plane-Bending (IPB) on mooring fatigue, alongside extreme single events such as 100-year hurricanes and loop/eddy currents including ramp-up and ramp-down phases, to ensure resilient mooring design. A detailed case study of a deep draft semi-submersible platform with 16 semi-taut moorings in 2,500 meters of water depth in the central GoM provides insights into the relative contributions of wave scatter diagram, VIMs from current bin diagram, the combined stresses of OPB/IPB/TT and extreme single events. By comparing these factors, the study aims to enhance understanding and optimize mooring system design for safety, reliability, and cost-effectiveness in offshore operations within the central GoM. The paper addresses a research gap by proposing a holistic approach that integrates findings from various contributions to advance current practices in mooring design. It presents a comprehensive framework for fatigue analysis and design optimization of mooring systems in the central GoM, emphasizing the critical importance of considering environmental conditions, OPB/IPB moments, and extreme single events to ensure the safety and reliability of mooring systems for offshore platforms.

Sonogram of coccygeus muscle in dairy cows with different gestational ages

  • Ulum, Mokhamad Fakhrul;Frastantie, Dilla;Purwantara, Bambang
    • Journal of Animal Science and Technology
    • /
    • v.59 no.12
    • /
    • pp.26.1-26.8
    • /
    • 2017
  • Background: The change in size and weight of the female reproductive organs during gestation and birth might be affect the perineal muscles and this condition in dairy cow not been reported. This study aimed to assess the ultrasonographic image of coccygeus muscle in 11 inseminated dairy cows with different gestational ages and postpartum. Methods: Gestational age was calculated based on the record of artificial insemination and confirmed by using transrectal brightness mode ultrasonography. Perineal hair between the sacrum and ischium bones was shaved along 3-5 cm before being ultrasound. The images of perineal area were obtained by transcutaneous ultrasound using a 5.0 MHz transducer. The thickness and intensity of the coccygeus muscle were measured and analyzed by gestational status and postpartum to show the differences. Results: The results showed that the thickness of coccygeus muscle increased with the increase in gestational age. Muscle intensity only increased at young gestational age. However, it decreased with the increase in gestational age (P < 0.05). Conclusions: The ultrasound image of coccygeus muscle was affected by gestational status, thus this method may be used as one of the new methods of indirect gestational detection on dairy cows.

Specific Gravity and Dimensional Stability of Boron-Densified Wood on Three Lesser-Used Species from Indonesia

  • AUGUSTINA, Sarah;WAHYUDI, Imam;DARMAWAN, I Wayan;MALIK, Jamaludin;BASRI, Efrida;KOJIMA, Yoichi
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.4
    • /
    • pp.458-471
    • /
    • 2020
  • Effect of pre-treatment and compression ratio on specific gravity (SG) and dimensional stability improvement of three lesser-used wood species from natural forest area of North Kalimantan Province, Indonesia had been investigated. Hot soaking at 80℃ for 3 hours within 2 and 5% of boron solution was applied as pre-treatment, while compression ratio applied was 20 and 40% from the initial thickness. Densification was conducted using hot pressing machine at 30 kg/㎠ of pressure and 160℃ of temperature for 15 minutes. Specific gravity was measured gravimetrically, while dimensional stability was evaluated through thickness swelling and water absorption as the indicator. Results show that SG of densified wood was influenced by wood species and compression ratio, but not by pre-treatment applied; while dimensional stability was influenced by wood species, compression ratio, and pre-treatment. Specific gravity and water absorption of densified wood was improved significantly. Specific gravity increased 28.86-63.03%, while water absorption decreased 12.80-15.89%. Thickness swelling of 20% densified wood was lower than that of 40% densified wood.

Varietal Differences of Dry Matter Accumulation and Related Characters in Cassava (Manihot esculenta Crantz)

  • Park Chang-Ho;Kim Kwang-Ho;Aswidinnoor Hajrial;Rumawas Fred
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.45-54
    • /
    • 2005
  • This study was carried out to investigate the patterns of dry matter (DM) production and accumulation, and to screen the relationships between related major growth characters and DM accumulation in four cassava varieties in Bogor $(6^{\circ}19'-6^{\circ}47'S,\;106^{\circ}21'-107^{\circ}13'E)$, West Java, Indonesia. Gading and Adiral developed an enough source and canopy in short at the early growth phase and then translocated assimilates to storage roots with a higher partitioning rate, even these varieties were considered as early-bulking varieties, which have superior source and sink potentials in increasing yield and DM of tubers. The root/shoot ratio (R/SR), total dry weight (TDW), leaf area duration, leaf area index (LAI), and number of tubers showed higher positive correlations with the dry weight of roots (DWR), and the direct effects of TDW, R/SR, and LAI on the DWR were higher. These characters were considered to be useful target characters to screen cassava varieties with high yield potential and high DM in aspect of tuber production.

Analysis of the Magnetic Field and Eddy Current Characteristics in Isolated Phase Bus System (상분리 모선의 자계 및 와전류 특성 해석)

  • Kim, Jin-Su;Ha, Deok-Yong;Choe, Seung-Gil;Gang, Hyeong-Bu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.509-516
    • /
    • 2001
  • Isolated phase bus(IPS) has a special structure for carrying large current generated by a generator to a main transformer. In the analysis of IPB, the understanding of the magnetic field distribution generated by large current is important. Especially, while the bus conductor current is flowing, almost same amount of current as bus conductor current is induced in the enclosures under the influence of time varying magnetic field, and therefore the large electric loss and the deterioration of insulating capability might occur due to Joule heating effect. Hence for the optimal design of IPB satisfying the condition to minimize the loss, the accurate analysis of magnetic field distribution and the eddy current characteristics of three phase isolated phase bus have been investigated. In the analysis of time varying magnetic field, instead of finite difference method(FDM) which is generally used, finite element method with phasor concept is investigated under the assumption that the bus current is purely sinusoidal. The characteristics is studied along the phase angle by comparing the effect of eddy current on the magnetic field distribution with the case that eddy current is not considered, and also the effect of material, thickness and radius of enclosure on the eddy current distribution is discussed.

  • PDF

Water Absorption and Dimensional Stability of Heat-treated Fast-growing Hardwoods

  • PRIADI, Trisna;SHOLIHAH, Maratus;KARLINASARI, Lina
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.567-578
    • /
    • 2019
  • A common problem with fast-growing hardwoods is dimensional instability that limits use of their wood. In this study, we investigated the effects of pre-drying methods, temperatures, and heating duration on the specific gravity, water absorption, and dimensional stability of three tropical fast-growing hardwoods, jabon (Neolamarckia cadamba Roxb.), sengon (Falcataria moluccana Miq.), and mangium (Acacia mangium Willd.). Wood samples were pre-dried by two methods (fan and oven at $40^{\circ}C$), and heat treatments were performed at three temperatures (120, 150, and $180^{\circ}C$) for two different time periods (2 and 6 hours). The specific gravity, water absorption, dimensional stability, and structural changes of the samples were evaluated. The results revealed that heat treatments slightly reduced the specific gravity of all three wood species. In addition, the heat treatments reduced water absorption and significantly improved dimensional stability of the samples. Oven pre-drying followed by heat treatment at $180^{\circ}C$ for 6 hours resulted in good physical improvement of jabon and sengon wood. Fan pre-drying followed by heat treatment at $180^{\circ}C$ for 2 hours improved the physical properties of mangium wood. The heat treatment shows a promising technique for improving the physical characteristic of fast growing hardwoods.