• Title/Summary/Keyword: INVAR

Search Result 104, Processing Time 0.024 seconds

A Study on Processing Shape and Overcutting of Invar Sheet by Pulse Electrochemical Machining (펄스전해가공을 이용한 인바 박판의 가공 형상 및 Overcutting 현상에 관한 연구)

  • Yang, Bu-Yeol;Kim, Seong-Hyun;Choi, Seung-Geon;Choi, Woong-Hirl;Chun, Kwang-Ho;Lee, Eun-Sang
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.314-319
    • /
    • 2015
  • Invar is a compound metal of Fe-Ni system contained 36.5% Ni. The characteristic of invar is that the coefficient of thermal expansion is $1.0{\times}10^{-6}cm/^{\circ}C$. It is approximately 10 times smaller than series of steel. Because of this low thermal expansion characteristic of Invar, it is used to shadow mask of display device such as UHDTV or OLED TV. In this study, pulse current from pulse generator instead of DC current is used to overcome the disadvantages of the conventional electrochemical machining. Pulsed current with different duty factor in PECM affect the precise geometry. Pulse electrochemical machining is conducted to machine the micro hole to the invar sheet with different duty factor. The machined shape and overcut of invar sheet with different duty factor is observed by optical microscope and scanning electron microscope (SEM).

Characteristics of the Femto-second Pulsed Laser Ablation according to Feed Velocity on the Invar Alloy (펨토초 레이저의 이송속도에 따른 Invar 합금의 어블레이션 특성)

  • Chung, Il-Young;Kang, Kyung-Ho;Kim, Jae-Do;Sohn, Ik-Bu;Noh, Young-Chul;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.25-31
    • /
    • 2009
  • Femto-second laser ablation with the various feed velocities of the Invar alloy and the micro surface milling for the processing condition were studied. We used a regenerative amplified Ti:sapphire laser with a 1kHz repetition rate, 184fs pulse duration time and 785nm wavelength. Femto-second laser pulse was irradiated on the Invar alloy with the air blowing at the condition of various laser peak powers and feed velocities. An ablation characteristic according to feed velocity of the Invar alloy was appeared as the non-linear type at different zone of energy fluence. The micro surface milling of the Invar alloy using a mapping method was investigated. The optimal condition of micro surface milling was laser peak power of 22.8mW, feed velocity of 1 mm/s, beam gap of $1{\mu}m$. With the optimal processing condition, the fine rectangular shape without burr and thermal damage was achieved. Using the femto-second laser system, it demonstrates excellent tool for micro surface milling of the Invar alloy without heat effects and poor edge.

Evaluation of the Mechanical Properties of Electroformed Multi-nano Layers by the Dynamic-Nano Indentation Method (동적 나노압침법과 유한요소 해석에 의한 전주된 Invar-Cu 복합 박막층의 기계적 특성 평가)

  • Gang, Bo-Gyeong;Han, Sang-Seon;Choe, Yong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.201.1-201.1
    • /
    • 2016
  • 전주된 Invar (Fe-35%Ni) 박판 위에 증착된 Cu 박막은 스퍼터 전력량이 증가할수록 증착속도가 증가하였다. Cu/Invar 박판이 Invar 박판보다 면저항 값이 34%로 작았다. Invar 박판 위에 Cu가 증착되면 최대자화와 투자율은 각각 40.3, 65.0 [%] 감소하였다. Cu 박막의 탄성하강강성도, 마찰계수, 피로한계는 각각 45, 0.130, 0.093 이었다. 동적 나노 압침법으로 얻은 Invaar/Cu 박막의 하중-시간-변위 곡선의 가장 큰 차이는 탄성하강강성도(elastic stiffness) 이었다. 미세경도와 나노경도의 실험적 관계식은 $Y[GPa]=9.18{\times}10^{-3}X[Hv]$ 이었다. 나노압침선단의 하중분포를 이차원 선형 및 비선형 유한요소해석을 통하여 1.0 [mN] 의 정적하중을 가한 Cu 박막은 486 [mN] 으로 예측되었다. 이는 표면탐침현미경으로 관찰한 압흔의 변형정도와 유사한 경향을 보였다.

  • PDF

DPSS UV Laser Projection Ablation of IC Substrates using an INVAR Mask (INVAR 마스크 응용 반도체 기판 소재의 고체 UV 레이저 프로젝션 어블레이션)

  • Sohn, Hyonkee;Choe, Hanseop;Park, Jong-Sig
    • Laser Solutions
    • /
    • v.15 no.4
    • /
    • pp.16-19
    • /
    • 2012
  • Due to the fact that the dimensions of circuit lines of IC substrates have been forecast to reduce rapidly, engraving the circuit line patterns with laser has emerged as a promising alternative. To engrave circuit line patterns in an IC substrate, we used a projection ablation technique in which a metal (INVAR) mask and a DPSS UV laser instead of an excimer laser are used. Results showed that the circuit line patterns engraved in the IC substrate have a width of about 15um and a depth of $13{\mu}m$. This indicates that the projection ablation with a metal mask and a DPSS UV laser could feasibly replace the semi-additive process (SAP).

  • PDF

Structural properties and field-emission characteristics of CNTs grown on Ni and Invar catalysts employing an ICP-CVD method (ICP-CVD 방법을 이용하여 Ni 및 Invar 촉매 위에 성장시킨 탄소나노튜브의 구조적 물성 및 전계방출 특성)

  • Hong, Seong-Tae;Kim, Jong-Pil;Park, Chang-Kyun;Uhm, Hyun-Seok;Park, Jin-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1597-1599
    • /
    • 2004
  • Carbon nanotubes (CNTs) are grown on the TiN-coated silicon substrate by varying the thickness of Ni and Invar426 catalyst layers at 600$^{\circ}C$ using an inductively coupled plasma-chemical vapor deposition (ICP-CVD). The Ni and Invar426 catalysts are formed using an RF magnetron sputtering system with various deposition periods. Characterization using various techniques, such as FESEM, HRTEM, and Raman spectroscopy, shows that the physical dimension as well as the crystal quality of grown CNTs are strongly changed by the kind and thickness of catalyst materials. It is also seen that Ni catalysts would be more desirable for vertical-alignment of CNTs compared with Invar426 catalysts. However, the CNTs using Invar426 catalysts display much better electron emission capabilities than those using Ni catalysts. The physical reason for all the measured data obtained are discussed to establish the relationship between structural properties and field-emissive properties of CNTs.

  • PDF

Microstructures and Textures of Electrodeposited Ni/Invar Bimetal (전주도금으로 제조된 Ni/Invar 바이메탈의 미세조직과 집합조직)

  • Kang, Ji Hoon;Seo, Jeong Ho;Park, Yong Bum
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.420-426
    • /
    • 2008
  • By using electrodeposition, we developed a new method to produce Ni/Invar bimetal sheets, which have been used for the present study to investigate the texture evolution during annealing. The grains of electrodeposited Ni were columnar, while those of electrodeposited Fe-Ni alloy were nanocrystalline. These different parts of the bimetal underwent different evolution of textures and microstructures during annealing. In the nanocrystalline Invar, the as-deposited textures were of fiber-type characterized by strong <100>//ND and weak <111>//ND components, and the occurrence of grain growth resulted in the strong development of the <111>//ND fiber texture with the minor <100> // ND components. On the other hand, in the columnar-structured Ni part, the as-deposited <110>//ND fiber texture transformed to the <112>//ND fiber texture due to recrystallization occurring above $550^{\circ}C$. The development of microtextures which took place during annealing in the Ni/Invar interfacial regions was investigated by using the OIM analysis, and discussed in terms of the effect of atomic diffusion across the interfaces.

Effect of Carbon on the Coefficient of Thermal Expansion of As-Cast Fe-3 0 wt.%Ni-12.5wt.% Co-xC Invar Alloys

  • 김봉서;유경재;김병걸;이희웅
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.247-247
    • /
    • 1999
  • The segregation (distribution) of nickel and the composition of its constituents influence the low thermal expansion characteristics (Invar effect) in Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy. The change of coefficient of the thermal expansion and magnetic properties were studied as an aspect of carbon addition causing the segregation of Ni in primary austenite of as-cast Fe-30 wt.% Ni-12.5 wt.% Co Invar alloy. The coefficient of thermal expansion of Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy showed its lowest value at 0.08 wt.% carbon, increased with increasing carbon content in the range of 0.08-1.0 wt.%C, kept constant at 1.0-2.0 wt.%C and decreased at carbon higher than 2.0 wt.%. The effective distribution of the coefficient of nickel in as-cast Fe-30 wt.% Ni-12.5 wt.% Co-xC Invar alloy increased with increasing carbon content. The volume fraction of they phase of Fe-30 wt.% Ni-12.5 wt.% Co-xC alloy increased with increasing carbon content. The microstructure of Fe-30 wt.% Ni-12.5 wt.% Co-xC alloy changed with the carbon content was independent of the coefficient of thermal expansion. The Curie temperature changed linearly with the carbon content and was similar to the change of the coefficient of thermal expansion. Moreover, the coefficient of thermal expansion decreased when the ratio of saturation magnetization to Curie temperature ($\sigma_s/T_c$) increased, decreasing the Curie temperature and showed a specific relationship with the magnetic properties of the Fe-30 wt.% Ni-12.5 wt.% Co-xCInvar alloy.