Browse > Article
http://dx.doi.org/10.7735/ksmte.2015.24.3.314

A Study on Processing Shape and Overcutting of Invar Sheet by Pulse Electrochemical Machining  

Yang, Bu-Yeol (School of Mechanical Engineering, Inha University)
Kim, Seong-Hyun (School of Mechanical Engineering, Inha University)
Choi, Seung-Geon (School of Mechanical Engineering, Inha University)
Choi, Woong-Hirl (School of Mechanical Engineering, Inha University)
Chun, Kwang-Ho (School of Mechanical Engineering, Inha University)
Lee, Eun-Sang (Department of Mechanical Engineering, Inha University)
Publication Information
Journal of the Korean Society of Manufacturing Technology Engineers / v.24, no.3, 2015 , pp. 314-319 More about this Journal
Abstract
Invar is a compound metal of Fe-Ni system contained 36.5% Ni. The characteristic of invar is that the coefficient of thermal expansion is $1.0{\times}10^{-6}cm/^{\circ}C$. It is approximately 10 times smaller than series of steel. Because of this low thermal expansion characteristic of Invar, it is used to shadow mask of display device such as UHDTV or OLED TV. In this study, pulse current from pulse generator instead of DC current is used to overcome the disadvantages of the conventional electrochemical machining. Pulsed current with different duty factor in PECM affect the precise geometry. Pulse electrochemical machining is conducted to machine the micro hole to the invar sheet with different duty factor. The machined shape and overcut of invar sheet with different duty factor is observed by optical microscope and scanning electron microscope (SEM).
Keywords
Invar; Duty factor; Pulse electrochemical machining (PECM); Scanning electron microscope (SEM); Overcutting;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Schuster, R., Krchiner, V., Allongue, P., Etrl, G., 2000, Electrochemical Micromachining, Science, 289, 98-101.   DOI   ScienceOn
2 Lee, E. S., Park, J. W., Moon, Y. H, 2003, Machining of Micro Grooves using Hybrid Electrochemical Processes with Voltage Pulses, Journal of the Korean Society of Precision Engineering, 20(9), 32-39.
3 Kim S. H., Choi S. G., Choi W. G., Baek, S. Y.,Yang B.Y., Lee E.S., 2014, Analysis of Surface Profile using Pulse Electro Chemical Machining, The Korean Society of Manufacturing Technology Engineers Autumn Conference 2014, 234.
4 Cho C. E., Baek S. Y., Lee E. S,, 2003, A study of electrochemical micromachining with voltage pulses, The Korean Society of Manufacturing Technology Engineers Conference 2003, 356-361.
5 Park, J. W., Lee, E. S., Moon, Y. H., 2002, A Study on the Electrochemical Micro-machining for Fabrication of Micro Grooves, Journal of the Korean Society of Precision Engineering, 19(4), 101-108.
6 Kim, W. M., Baek, S. Y., Lee, E. S., Tak, Y. S., 2004, A study of Pulse EMM for Invar alloy, KSPE Autumn Conference, 70-73.
7 Fan. Z. W., Hourng, L. W., Wang, C.Y., 2010, Fabrication of tungsten microelectrodes using pulsed electrochemical machining, Precision Engineering, 34, 489-496.   DOI   ScienceOn
8 Ahn, S. H., Ryu, S. H., Choi, D. K.,Chu, C. N., 2003, Localized Electro-chemical Micro Drilling Using Ultra Short Pulses, Journal of the Korean Society of Precision Engineering, 20(8), 213-220.
9 Inaba, M., Techima, K., Higashinakagawa, E., Ohtake, Y., 1988, Development of an Invar Shadow Mask for Color Cathode Ray Tubes, Wiley, New York.
10 Kim S. H, Choi S. G, Choi W.K,Yang B. Y, Lee E. S., 2014, Pulse electrochemical machining on Invar alloy : Optical microscopic/SEM and non-contact 3D measurement study of surface analyses, Applied surface science, 314:30, 822-831.   DOI   ScienceOn
11 Won, S. T., 2001, The effects of the annealing heat treatments on the mechanical properties of the Invar materials, Journal of the Korean Society of Precision Engineering, 18, 129-138.
12 Grimmentt, D., Schwartz, M., Nobe, K., 1993, A comparison of DC and pulsed Fe-Ni alloy deposits, Journal of the Electrochemical Society, 140, 973-978.   DOI