• Title/Summary/Keyword: INSECTS

Search Result 1,427, Processing Time 0.024 seconds

Identification of a Single Nucleotide Polymorphism (SNP) Marker for the Detection of Enhanced Honey Production in Hoenybee (수밀력 우수 꿀벌 계통 판별을 위한 계통 특이 분자마커 개발)

  • Kim, Hye-Kyung;Lee, Myeong-Lyeol;Lee, Man-Young;Choi, Yong-Soo;Kim, Dongwon;Kang, Ah Rang
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.147-154
    • /
    • 2017
  • Honeybees (Apis mellifera) are common pollinators and important insects studied in agriculture, ecology and basic research. Recently, RDA (Rural Development Administration) and YIRI (Yecheon-gun Industrial Insect Research Institute) have been breeding a triple crossbred honey bee named Jangwon, which have the ability to produce superior quality honey. In this study, we identified a single nucleotide polymorphism (SNP) marker in the genome of Jangwon honeybee, particularly, in the paternal line (D line). Initially, we performed Sequence-Based Genotyping (SBG) using the Illumina Hiseq 2500 in 5 honeybee inbred lines; A, C, D, E, and F; and obtained 1,029 SNPs. Seventeen SNPs for each inbred line were generated and selected after further filtering of the SNP dataset. The 17 SNP markers validated by performing TaqMan probe-based real-time PCR and genotyping analysis was conducted. Genotyping analysis of the 5 honeybee inbred lines and one hybrid line, $D{\times}F$, revealed that one set of SNP marker, AmD9, precisely discriminated the inbred line D from the others. Our results suggest that the identified SNP marker, AmD9, is successful in distinguishing the inbred honeybee lines D, and can be directly used for genotyping and breeding applications.

The Antifungal Effect of Rhus verniciflua Stokes against Metarhizium anisopliae on the Edible Insect, Protaetia brevitarsis (Coleoptera) (흰점박이꽃무지에 발생하는 병원성 곰팡이 Metarhizium anisopliae에 대한 옻나무 추출액의 항진균 효과)

  • Kim, Nang-Hee;Song, Myung-Ha;Kim, Eunsun;Kim, Yongsoon;Park, Kwan-Ho;Kim, Sunyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.374-379
    • /
    • 2020
  • The white-spotted flower chafer (Protaetia brevitarsis) larva is one of the insects widely-used for edible and medicinal purposes in Eastern Asia. As a result of increasing demand for P. brevitarsis, massrearing systems in domestic farms have become necessary. However, the mass-rearing of larvae under confined rearing conditions could provide conditions unsuitable for preventing entomopathogenic diseases. Metarhizium anisopliae is the strongest fatal entomopathogenic fungus against P. brevitarsis. For inhibition of M. anisopliae, we used a Rhus verniciflua Stokes extract that has antifungal components. We investigated the inhibitory effect of the R. verniciflua extract at 1%, 5%, and 10% concentrations. The results showed that a 1% R. verniciflua extract added to sawdust produced a significantly low P. brevitarsis mortality rate. Moreover, extract-treated groups were heavier and had a shorter larval period than those of the untreated group. Consequently, we suggest that using an R. verniciflua extract can reduce the P. brevitarsis fatality rate from entomopathogenic fungi (e.g. M. anisopliae), resulting in more effective mass-rearing systems for P. brevitarsis.

Development of Basic Research for Establishing the Apple IPM System in Korea: Dr. Lee Soon-Won's Research Case (한국형 사과 병해충종합관리(IPM) 체계 수립을 위한 기초연구의 전개: 이순원 박사의 연구 사례)

  • Ahn, Jeong Joon;Oh, Hyeonseok;Choi, Kyung San;Choi, Kyung-Hee;Do, Yun-Su;Lee, Sun-Young;Lee, Dong-Hyuk
    • Korean journal of applied entomology
    • /
    • v.60 no.1
    • /
    • pp.1-13
    • /
    • 2021
  • The concept of integrated pest management (IPM) first developed in the 1950s, and the concept of economic control via pest management was established in the 1960s. Research on IPM began in the United States and Europe, and IPM studies in Korea started with citrus insects and paddy field pests following the distribution of high-yield varieties of rice. Apple IPM in Korea began with research on pest control using chemical pesticides and pesticides resistant to insect pests, studies on the ecology of insect pests and their natural enemies, and the exploitation of sex pheromones on insect pests. Since the 1990s, IPM research and field projects have been carried out simultaneously for farming households. In the 2000s, the development of pest monitoring and forecasting models centered on mating disturbances, database programs for pests, and networks for sharing information. IPM technology has expanded via the development of unmanned forecasting systems and automation technologies in the 2010s.

Comparison of Insect Pest Communities on 30 Cultivars of Hibiscus syriacus (나라꽃 무궁화 30품종에서 발생하는 해충상 비교)

  • Jung, Jong-Kook;Kim, Mannyeon;Lee, Cha Young;Jang, Beom-Jun;Kim, Dongsoo;Kwon, Hae Yeon;Park, Yunmi
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.1
    • /
    • pp.116-127
    • /
    • 2021
  • In this study, insect pest communities and major insect pest species were investigated and compared among 30 cultivars of Hibiscus syriacus. Insects on H. syriacus were observed with the naked eye over 3 years (from 2018 to 2020) in Busan and Suwon. Except for Aphis gossypii (79,059 and 23,654 individuals in Busan and Suwon, respectively), 20 species (1,147 individuals) and 31 species (2,240 individuals) were found in Busan and Suwon, respectively. The number of insect pest species and individuals did not differ among H. syriacus cultivars, but there were differences according to study locations. The dominant insect pest species were A. gossypii, Rehimena surusalis, Rusicada privata, Halyomorpha halys, Haritalodes derogata, Dolycoris baccarum, and Plautia stali; the number of individuals in dominant species differed according to study location and year but not among H. syriacus cultivars. In summary, insect pest communities did not differ among 30 H. syriacus cultivars, but the matrix of surrounding environments where H. syriacus are planted may be more important.

Molecular Mechanism of ABC Transporter Mdr49A Associated with a Positive Cross-Resistance in Transgenic Drosophila (형질전환 초파리를 이용한 Mdr49A 유전자의 살충제 교차저항성 기능 구명)

  • Seong, Keon Mook;Pittendrigh, Barry R.
    • Korean journal of applied entomology
    • /
    • v.59 no.4
    • /
    • pp.341-348
    • /
    • 2020
  • The ATP-binding cassette (ABC) transporter superfamily represents the largest transmembrane protein that transports a variety of substrates across extra- and intra-cellular membranes. In insects, the ABC transporter proteins play crucial roles in insecticide resistance. To date, no studies have investigated the involvement of ABC transporter gene for cross-resistance to insecticide chemistries. Here, we studied such possible mechanisms against six conventional insecticides using transgenic Drosophila melanogaster strains carrying Mdr49 transcript variant A. For the 91-R and 91-C strains of Drosophila melanogaster, although they have a common origin, 91-R has been intensely selected with DDT for over 60 years, while 91-C has received no insecticide selection. Our transgenic analyses showed that overexpression of 91-R-MDR49 transcript variant A along with three amino acid variations can yield a relatively low degree of cross-resistance to carbofuran (2.0~6.7-fold) and permethrin (2.5~10.5-fold) but did not show cross-resistance to abamectin, imidacloprid, methoxychlor, and prothiofos as compared to the Gal4-driver control strain without transgene expression. These results indicate that the overexpression of Mdr49A in itself leads to a cross-resistance and three amino acid changes have additional effects on positive cross-resistance to carbofuran and permethrin.

Potential Impacts of Climate Change on Water Temperature of the Streams in Han-River Basin (기후변화 시나리오별 한강유역의 수계별 수온상승 가능성)

  • Kim, Minhee;Lee, Junghee;Sung, Kyounghee;Lim, Cheolsoo;Hwang, Wonjae;Hyun, Seunghun
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.1
    • /
    • pp.19-30
    • /
    • 2022
  • Climate change has increased the average air temperature. Rising air temperature are absorbed by water bodies, leading to increasing water temperature. Increased water temperature will cause eutrophication and excess algal growth, which will reduce water quality. In this study, long-term trends of air and water temperatures in the Han-river basin over the period of 1997-2020 were discussed to assess the impacts of climate change. Future (~2100s) levels of air temperature were predicted based on the climate change scenarios (Representative concentration pathway (RCP) 2.6, 4.5, 6.0, and 8.5). The results showed that air and water temperatures rose at an average rate of 0.027℃ year-1 and 0.038℃ year-1 respectively, over the past 24 years (1997 to 2020). Future air temperatures under RCP 2.6, 4.5, 6.0, and 8.5 increased up to 0.32℃ 1.18℃, 2.14℃, and 3.51℃, respectively. An increasing water temperature could dissolve more minerals from the surrounding rock and will therefore have a higher electrical conductivity. It is the opposite when considering a gas, such as oxygen, dissolved in the water. Water temperature also governs the kinds of organisms that can live in rivers and lakes. Fish, insects, zooplankton, phytoplankton, and other aquatic species all have a preferred temperature range. As temperatures get too far above or below this preferred range, the number of individuals of the species decreases until finally there are none. Therefore, changes of water temperature that are induced by climate change have important implications on water supplies, water quality, and aquatic ecosystems of a watershed.

Allomyrina dichotoma larva extract attenuates free fatty acid-induced lipotoxicity in pancreatic beta cells

  • Kim, Kyong;Kwak, Min-Kyu;Bae, Gong-Deuk;Park, Eun-Young;Baek, Dong-Jae;Kim, Chul-Young;Jang, Se-Eun;Jun, Hee-Sook;Oh, Yoon Sin
    • Nutrition Research and Practice
    • /
    • v.15 no.3
    • /
    • pp.294-308
    • /
    • 2021
  • BACKGROUD/OBJECTIVES: Allomyrina dichotoma larva (ADL), one of the many edible insects recognized as future food resources, has a range of pharmacological activities. In a previous study, an ADL extract (ADLE) reduced the hepatic insulin resistance of high-fat diet (HFD)-induced diabetic mice. On the other hand, the associated molecular mechanisms underlying pancreatic beta-cell dysfunction remain unclear. This study examined the effects of ADLE on palmitate-induced lipotoxicity in a beta cell line of a rat origin, INS-1 cells. MATERIALS/METHODS: ADLE was administered to high-fat diet treated mice. The expression of apoptosis-related molecules was measured by Western blotting, and reactive oxidative stress generation and nitric oxide production were measured by DCH-DA fluorescence and a Griess assay, respectively. RESULTS: The administration of ADLE to HFD-induced diabetic mice reduced the hyperplasia, 4-hydroxynonenal levels, and the number of apoptotic cells while improving the insulin levels compared to the HFD group. Treatment of INS-1 cells with palmitate reduced insulin secretion, which was attenuated by the ADLE treatment. Furthermore, the ADLE treatment prevented palmitate-induced cell death in INS-1 cells and isolated islets by reducing the apoptotic signaling molecules, including cleaved caspase-3 and PARP, and the Bax/Bcl2 ratio. ADLE also reduced the levels of reactive oxygen species generation, lipid accumulation, and nitrite production in palmitate-treated INS-1 cells while increasing the ATP levels. This effect corresponded to the decreased expression of inducible nitric oxide synthase (iNOS) mRNA and protein. CONCLUSIONS: ADLE helps prevent lipotoxic beta-cell death in INS-1 cells and HFD-diabetic mice, suggesting that ADLE can be used to prevent or treat beta-cell damage in glucose intolerance during the development of diabetes.

Insect Juvenile Hormone Antagonists as Eco-friendly Insecticides (친환경 살충제로서의 곤충 유충호르몬 길항제)

  • Choi, Jae Young;Je, Yeon Ho
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.101-108
    • /
    • 2022
  • Because of their specificity to target insects and relatively low toxicity to non-target organisms, insect growth regulators (IGRs) have been regarded as attractive alternatives to chemical insecticides. Commercially available IGRs are classified into juvenile hormone agonists (JHAs), ecdysone agonists (EAs), and chitin synthesis inhibitors (CSIs) according to their mode of action. Recently, JH-mediated interaction of methoprene-tolerant (Met), which is JH receptor, and its binding partners have been replicated in vitro using yeast cells transformed with the Met and FISC/CYC genes of A. aegypti. Using this in vitro yeast two-hybrid β-galactosidase assay, juvenile hormone antagonists (JHANs) have been identified from various sources including chemical libraries, plants, and microorganisms. As juvenile hormone (JH) is an insect specific hormone and regulates development, reproduction, diapause and other physiological processes, JHANs fatally disrupt the endocrine signals, which result in abnormal development and larval death. These results suggested that JHANs could be efficiently applied as IGR insecticides with a broad insecticidal spectrum. This review discuses JH signaling pathway mediated by Met and future prospects of JHANs as environmentally benign IGR insecticides.

Comparative Insect Biodiversity Analyses on the Agricultural Ecosystems of Goesan District of Korea (괴산군 지역 농업 생태계의 곤충 다양성 비교 분석)

  • Kim, Hoon;Sun, Yan;Lee, Seung-Min;Ku, Bon-Jin;Ku, Yun-Mo;Kim, Tae-Yeon;Moon, Myung-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.4
    • /
    • pp.539-559
    • /
    • 2021
  • Agricultural ecosystem biodiversity monitoring and community variation analysis of insects were conducted from 2016 to 2018 in selected conventional and organic farming fields in Goesan district, Chungcheongbuk-do, South Korea. The total number of 1,125 species in 16 orders and 207 families were identified. The numbers of species collected in the locations practicing organic farming were greater than the conventional farming both in the paddy fields (564 vs. 383 species) and the upland fields (471 vs. 365 species). Among them, Hemiptera had the most abundant of species, followed by Diptera, Hymenoptera, Coleoptera and Araneae. We calculated various index values of biodiversity (diversity index H', richness index R, evenness index J', dominance index D, and similarity index QS) based on quantitative measurements of species and individuals collected over three years of field monitoring. Variations in biodiversity index values in different agricultural systems show that the positive effect of organic farming is to produce more biodiversity than conventional farming systems. When compared to other index results reported in Korea, Japan and China, the richness index was higher and other index values were at similar levels.

Improvement of Silkworm Egg Microinjection Using 3D Printing Technology (3D 프린팅 기술을 이용한 누에 알 미세주입 기술 개선)

  • Jeong, Chan Young;Lee, Chang Hoon;Seok, Young-Seek;Yong, Sang Yeop;Kim, Seong-Wan;Kim, Kee Young;Park, Jong Woo
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.249-254
    • /
    • 2022
  • Silkworms, which have for long been used as an insect resource for industrialization, have recently attracted attention as potential bio-factories for the production of novel biomaterials. In this regard, material production is typically achieved based on transformation technology, mediated via microinjection, in which a target gene is inserted into eggs containing an embryo. However, an essential step in the microinjection procedure is egg fixation, which can be a time-consuming and laborious task. Therefore, in this study, using the 3DCADian program, we adopted a 3D printing approach to model egg liners and glue drawers, which can contribute to facilitating egg alignment and fixation, thereby enhancing transformation efficiency by reducing time consumption and fatigue. After rendering using Fusion 360, the two supplementary tools were produced by printing with nylon resin (PA12) and Sinterit Lisa Pro. Subsequent analysis of the time required to fix eggs on glass slides using the two manufactured tools, revealed that the processing time was reduced by approximately 18.6% when the two tools were used compared with when these tools were not used. These innovations not only reduced fatigue but also contributed to more effective use of the microscope and manipulator for microinjection. Consequently, we believe that with additional research and refinement, the egg liner and glue drawer developed in this study could be used to enhance silkworm transformation efficiency and study similar transformation systems in other industrial insects.