• Title/Summary/Keyword: INDEX OF SPECIES DIVERSITY

Search Result 830, Processing Time 0.024 seconds

Effects of an Artificial Habitat Creation of Menyanthes trifoliata L. Using Planting Module (식재모듈을 활용한 조름나물(Menyanthes trifoliata L.) 인공서식지 조성의 효과)

  • Heo, Jinok;Kim, Heung-Tae;Kim, Cheol Min;Bae, Yeon Jae;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • Habitat creation for endangered species Menyanthes trifoliata L. using planting module represents a habitat type such as the rhizome grows horizontally to open water at the margin of the lake. The objectives of this mesocosm experiment are habitat creation with easy construction and low management effort, and to investigate the potential of providing a habitat for aquatic macroinvertebrates. Planting modules had three different substrates of bed soil, perlite and K-SOIL (artificial lightweight soil using bottom ash). These modules were established in two different size of the tub($1170{\times}2250{\times}300mm^3$, $900{\times}1360{\times}190mm^3$). According to the monitoring results, number of leaves and coverage of M. trifoliata showed significant difference with substrate and tub size. The number of leaves showed similar growth responses in bed soil (mean 22.979) and K-SOIL (mean 28.042) substrates but growth was poor in perlite substrate (mean 1.667). The number of leaves in the large tub was more than small tub (p=0.015). Similar responses were obtained with the coverage, the length of rhizome and the number of rhizome in M. trifoliata. A total of 21 taxa of aquatic macroinvertebrates including 1,145 individuals was found in the mesocosm. The Shannon diversity index and colonization index in the mesocosm were similar to the previous studies. These results suggest that the experimental mesocosm could provide sufficient habitats for aquatic macroinvertebrates. If planting modules use bed soil or K-SOIL by planting substrate, establish that taking into account open water surfaces for M. trifoliata growth and manage about 30cm of water depth control, then habitat creation for M. trifoilata will be successful.

Effect of thinning ratio on the forest environment and fruiting of ectomycorrhizal mushrooms in a Pinus densiflora stand (소나무림에서 간벌률이 산림 내 환경과 외생균근성 버섯 발생에 미치는 영향)

  • Yong-Woo Park;Jin-Gun Kim;Hwayong Lee
    • Journal of Mushroom
    • /
    • v.21 no.1
    • /
    • pp.22-32
    • /
    • 2023
  • To investigate the effect of thinning intensity on environmental factors and ectomycorrhizal mushroom fruiting in forest ecosystems, we studied canopy closure, throughfall, soil temperature, soil moisture, light response of understory vegetation, and ectomycorrhizal mushroom fruiting in a 10-year-old pine forest after 34%, 45%, and 60% thinning. Canopy closure was significantly higher in the 34% treatment and control plots, ranging from 80-85% in April. However, in November, all thinning treatment plots showed a decrease of approximately 5-10% compared with the control plot. The 60% treatment plot had over 200 mm of additional throughfall compared with the control plot, and monthly throughfall was significantly higher by more than 100 mm in October. The soil temperature in each treatment plot increased significantly by up to 1℃ or more compared with the control plot as the thinning rate increased. The soil moisture increased by more than 5% in the thinning treatment plots during rainfall, particularly in the 34% treatment plot, where the rate of moisture decrease was slower. The photosynthetic rate of major tree species (excluding Pinus densiflora)was highest in Quercus mongolica, with a rate of 7 µmolCO2·m-2·s-1. At a lightintensity of 800 μmol·m-2·s-1, Q. mongolica showed the highest photosynthetic level of 6 ± 0.3 μmolCO2·m-2·s-1 in the 45% treatment. The photosynthetic rate of Fraxinus sieboldiana and Styrax japonicus increased as the thinning intensity increased. The Shannon-Wiener index of mycorrhizal mushrooms did not significantly differ among treatments, but the fresh weight of mushrooms was approximately 360-840 g higher in the 34% and 45% treatments than in the control. Additionally, the fresh weight of fungi in the 60% treatment was 860 g less than that in the control. There were more individuals of Amanita citrina in the control than in the thinning treatment, while Suillus bovinus numbers increased by more than 10 times in the 34% thinning treatment compared with the control.

The Variation of Natural Population of Pinus densiflora S. et Z. in Korea (VI) - Genetic Variation of the Progency Originated from Myong-Ju, Ul-Jin and Suweon Populations - (소나무 천연집단(天然集團)의 변이(變異)에 관(關)한 연구(硏究)(VI) - 명주(溟洲), 울진(蔚珍), 수원(水原) 소나무 집단(集團)의 차대(次代)의 유전변이(遺傳變異) -)

  • Yim, Kyong Bin;Kwon, Ki Won;Lee, Kyong Jae
    • Journal of Korean Society of Forest Science
    • /
    • v.38 no.1
    • /
    • pp.33-45
    • /
    • 1978
  • The purpose of present study is to analyze the genetic variation of natural stand of Pinus densiflora. In 1975 following after the selection of 1974, twenty trees from each of three natural populations of the species were selected and their open-pollinated seeds were collected, and the locations and conditions of the populations ate presented in table 1, 2 and figure 1. Some morphological traits of the populations were already detailed in our second report of this series, in which Myong-Ju and Ul-Jin populations were regarded to be superior phenotypically to suweon population. The morphological traits of cone, seed and seed-wing, and also the growth performances and needle characters of the seedling were observed in the present study according to the previous methods. The results obtained are summarized as follows; 1. The meteorological data obtained by averaging the records of 30 year period (1931~1960) measured from the nearest meteorological stations to each population are shown in fig.2, 3, 4. The distributional patterns of investigated climate factors are generally considered to be similar among the locations. However, the precipitation density during growing season and the air temperature during dormant season on Suweon area, population 6, were quite different from those of the other areas. 2. The measurements of fresh cone weight, length, diameter and cone index, i.e., length to diameter ratio are presented in table 7. As shown in table 7, all these traits except for cone diameter seem to be highly significant in population differences and family differences within population. 3. The morphological traits of seed and seed-wing are detailed in table 8, 9, and highly significant differences are recognized among the populations and the families within population in seed-wing length, seed-wing index, seed weight, seed-length and seed index but not among the populations in the other observed traits. The values of correlation coefficient between the characters of cone and seed are given in table 10 and the positive significant correlations can be observed in the most parts of the compared traits. 4. Significant statistical differences among populations and families within population are observed in the growth performances of 1-0 and 1-1 seedling height of these progenies. But the differences in root collar diameter are shown only among families within population. As shown in table 13, the most parts of correlations are not significant statistically between the growth performances of seedling and the seed characters. 5. The number of stomata row on both sides of needle and the serration density were measured in the seedlings from each of the families of the three populations. As shown in table 15, statistical differences are considered to be significant among the populations and among the families within population in serration density but not among the populations in stomata row on both sides of the needle. The results differ from those of the third report of this series. Even if one of the reason seems to be the diversity of selected populations, it could not be confirmed definitely. The correlations between progenies and parents are not generally observed in the investigated traits of needle as shown in table 16.

  • PDF

The Analysis of Vegetation Characteristics of Organic Rice Paddy for Value Assessment of the Rice Paddy Wetland (논습지 가치평가를 위한 유기재배 논의 식생특성 분석)

  • Park, Kwang-Lai;Kong, Min-Jae;Kim, Nam-Choon;Son, Jin-Kwan
    • Journal of Wetlands Research
    • /
    • v.14 no.1
    • /
    • pp.59-73
    • /
    • 2012
  • The importance of rice paddy wetland has been raised since the 10th Ramsar Convention in 2010. However, there is shortage of study on the evaluation of rice paddy wetland and also of the study on the effect of organic agriculture on the vegetation characteristics. Accordingly, this study examined the vegetation characteristics of organic rice paddy for the basic resources of evaluating value of rice paddy wetland. 6 places of organic rice paddy and conventional rice paddy were chosen as research targets. It analyzed the function of 'Floral Diversity and Wildlife Habitat' among the revised RAM, an existing wetland evaluation system. As to the factor affecting the analysis result, simple land-use result was proved to determine the evaluation. As a result of vegetation investigation total 176 taxa, 53 families, 146 generics, 148 species, 26 varieties and 1 forma. When the difference of appearance of life form between organic area and conventional area was examined, organic paddy had higher appearance of life form in Therophyte and Megaphanerophyte. For the distribution of Naturalized plants, organic rice paddy had lower naturalized rate and urbanization index than conventional rice paddy. As to the Pearson correlation analysis between growing condition and vegetation characteristics, variety of rice paddy vegetation showed it was not heavily influenced by the land use. However, the organic rice paddy area had more variety in vegetation than conventional rice paddy. There was about 1% correlation with types of Cyperaceae, which means that the classification group of Cyperaceae can be utilized in evaluating rice paddy wetland later on. It is determined that the wetland evaluation has been widely influenced by soil environment, water environment and surrounding natural and artificial landscape as well as vegetation characteristics. Accordingly, further research seems to be required with minute investigation to an extensive area.

A Comparative Study on the Information of Zooplankton Community Based on Towing Type and Depth in the Lake Ecosystems (정수생태계 동물플랑크톤 채집 시 네트 인양 유형 및 수심에 따른 군집 정보 비교)

  • OH, Hye-Ji;Chae, Yeon-Ji;Ku, Doyeong;Kim, Yu-Jin;Wang, Jeong-Hyeon;Choi, Bohyung;Ji, Chang Woo;Kwak, Ihn-Sil;Park, Young-Seuk;Nam, Gui-Sook;Kim, Yong-Jae;Chang, Kwang-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.365-373
    • /
    • 2020
  • Biomonitoring Survey and Assessment Manual for lake ecosystem suggest zooplankton collection methods to compare relatively the number of species, population density, and community indices, taking into account the convenience of the field sampling according to the sites' water depth. In this study, the oblique towing and 20 m vertical towing methods presented in the manual were respectively compared with the whole water column-vertical towing and we analyzed the differences and characteristics of zooplankton community information gathered by each collection method. For community indices, there was no difference in the comparison of oblique/vertical towing methods in the shallow lake, but in the deep lake, the diversity and richness indices increased when vertically towing through whole water column rather than when limiting the towing depth to 20 m. In addition, the total zooplankton density collected by the oblique/20 m vertical towing methods was about three times higher than the whole water column-vertical towing method, which means that the density of zooplankton community can be overestimated depending on the collection methods. It appears to be results of differences in the zooplankton density by water layer arising from their vertical distribution and in filtered raw water quantity according to the towing depth/distance. Hence, for zooplankton community information to be used as a functional quantitative indicator representing the entire lake, it would be more appropriate to apply the whole water column-vertical towing method with considering the distribution of zooplankton density by depth and contribution rate of each water layer when converting total zooplankton density.

A Study for Plant Community Structure and Management Plan of Pinus densiflora Forest in Byeonsanbando National Park (변산반도국립공원 소나무림 식물군집구조 및 관리방안 연구)

  • Choi, Jin-Woo;Kwak, Jeong-In;Lee, Kyong-Jae;Choi, Woon-Kyoo
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.5
    • /
    • pp.447-459
    • /
    • 2009
  • This study is intended to provide basic date for the efficient management of Pinus densiflora community by analyzing ecological characteristics of Pinus densiflora inhabiting Byeonsanbando National Park. According to investigations, P. densiflora community and P. densiflora-Quercus community are widely distributed, occupying 40.3% of the total area. 21 sites ($400m^2$per site) are selected for TWINSPAN analysis, and the result indicates that the whole community of P. densiflora and P. densiflora-Quercus can be classified into 8 types, and the age of P. densiflora is 40-50 years, which is similar to that of deciduous broad-leaved trees. The 8 community types are: P. densiflora community which competes with Quercus variabilis; P. densiflora community in which Fraxinus sieboldiana and Quercus serrata grow in the understory layer; P. densifloa community in which Q. serrata grow in the understory layer and Smilax china var. microphylla in the shrub layer respectively; P. densifloa community in which P. densiflora and F. sieboldiana grow in the understory layer; P. densiflora community which competes with Q. serrata and Carpinus tschonoskii; P. densiflora community which competes with Q. variabilis and Q. serrata; P. densiflora community in which Prunus sargentii grow; P. densiflora community in which Abies holophylla grow. P. densiflora community which competes with Q. variablis and C. tschonoskii seems to be in a stage of succession to deciduous broad-leaved community. The analysis indicates that Shannon diversity index is 0.2756-1.3879. It also indicates that there is a negative correlation between P. densiflora and Q. variabilis and C. tschonoskii; there is a positive correlation between P. densiflora and F. sieboldiana and Rhododendron schlippenbachii. These investigations show that the transformation of vegetation is already under way. There is a possibility that ecological succession can take place in 30.4% of the total area from P. densiflora to Quercus and deciduous broad - leaved trees. Therefore, it is recommended that the preservation and maintenance of P. densiflora be implemented by taking control of competing species which undermine the stability of P. densiflora forest community.

Dynamics of Phytoplankton and Zooplankton of a Shallow Eutrophic Lake (lake llgam) (수심이 얕은 부영양 인공호(일감호)의 동 ${\cdot}$ 식물플랑크톤 동태학)

  • Kim, Ho-Sub;Park, Je-Chul;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.286-294
    • /
    • 2003
  • This study was attempted to understand seasonal dynamics of phyto- and zooplankton communities in shallow, eutrophic Lake llgam and to compare them with the PEG (Plankton Ecology Group) model. Seasonal succession pattern of phytoplankton community was similar to PEG model as Chlorophyceae and Baciliphyceae increase during spring and autumn fellowed by increase of Cyanophyceae. However, based on the cell density and biomass, a dominant phytoplankton community differed with PEG model: Cyanophyceae had been a dominant community throughout a year, except for ice-cover period during which Chlorophyceae was a dominant group. In spring, when ice melted and dissolved nutrients in water column increased, the increase of Chlorophyceae occurred: when nutrients (DIN and DIP) rapidly decreased, Cyanophyceae increase occurred. Microcystis, Oscillatoria, Lyngbya, Merismopedia were maior dominant species of Cyanophyceae and their cell density and/or biomass was the highest in October 2000 (12.9${\pm}$5.8${\times}10^5$ cells/ml, 3.5${\pm}$0.9${\times}10^3{\mu}gC/l$). Cyanophyceae biomass showed positive relationship with chlorophyll a ($r^2$ = 0.71,P< 0.001) and TP concentration ($r^2$ = 0.62, P< 0.001). Small-sized rotifers such as Keratella cochlearis, increased between March and May when Chlorophyceae increased. Both high standing crop of copepods and cladocerans, such as Diaphanosoma brachyrum and Bosmina longirostris occurred between June and September accompanied with the increase of Dinophyceae and Bacillariophyceae. There was no evidence that clear-water phase was caused by zooplankton grazing. The diversity and evenness index of phyto- and/or zooplankton increased with chlorophyll a concentration. These results suggest zooplankton grazing and limiting nutrient deficiency could lead to change of phytoplankton biomass, but not the phytoplankton community in Lake llgam.

Vegetation Structure and Management Planning of Yongha Gugok in Woraksan National Park (월악산국립공원 용하구곡의 식생구조 및 관리방안)

  • Back, Seung-Jun;Kang, Hyun-Kyung;Kim, Sun-Hwa
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.4
    • /
    • pp.487-497
    • /
    • 2013
  • This study was conducted to suggest vegetation management plan for Gugok landscape maintenance and improvement by deducing the vegetation landscape factors inherent in Yongha Gugok and understanding vegetation structure through the investigate of existing vegetation and plant community structure of Yongha valley in Woraksan National Park. There were broad and flat rocks, natural layered stones, clear water, light stones, stream, valleys, waterfalls, Pinus densiflora and Acer pseudosieboldianum as a result of deducing natural factors on poetry. There were P. densiflora and A. pseudosieboldianum appeared as one of main vegetation landscape elements. The actual vegetation analysis results were as followed. The natural vegetation occupied 67.5% and it was classified as P. densiflora community, Quercus variabilis community, Q. variabilis-P. densiflora community, Q. variabilis-Q. serrata community, Q. serrata community, Q. mongolica community, Q. mongolica-P. densiflora community, Deciduous broad-leaved tree community. The artificial vegetation(18.7%) was classified as Q. serrata community-Larix kaempferi community, Q. mongolica- Castanea crenata community, L. kaempferi community, L. kaempferi-C. crenata community, fruticeta, L. kaempferi-Q. mongolica community. The grassland area(2.0%) was classified as Miscanthus sinensis community, Phragmites communis community, and other areas were classified as landscape tree planting area, farm, orchard, residential area. The representative vegetation were P. densiflora community, Q. variabilis-Q. serrata community, L. kaempferi community, Deciduous broad-leaved tree community in Yongha Gugok. The species diversity index of Shannon was 0.6274~0.9908 on the whole. Yongha Gugok, as a symbol of succession on confucianism and reverence for nature, should be preserved natural valley landscape being clean and wijungchuksa at the end of Joseon Dynasty and Japanese Colonial era. In this historical and cultural Gugok, vegetation landscape management plan is needed to landscape maintenance with P. densiflora community, density control with L. kaempferi community. And it is considered when natural disasters and artificial damages happened, P. densiflora-oriented vegetation restoration plan should be applied in order to restore.

An Approach to Enhance the Unfair Area in the Rural Landscape (농촌 조건불리지역의 경관개선을 위한 접근)

  • Jang, Gab-Sue;Park, In-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.2
    • /
    • pp.60-68
    • /
    • 2008
  • Three land-use limitations including water hazard, soil erosion and fallow potential were evaluated to define an unfair area. Landscape indices in the unfair areas, defined by evaluations before and after landscape enhancement, were computed by Fragstats v3.3 and compared in order to propose a landscape enhancement plan. The results are as follows: First, as a result of the land evaluation, 388.56ha was analyzed for the 1st class(S1), 623.25ha for the 2nd class(S2), 138.08ha(S3s: 82.47ha, S3e: 51.88ha) for the 3rd class(S3), 230.44ha(N1w: 194.91ha, N1e: 23.09ha, N1es: 13.94ha) for the 4th class(N1), and 67.91ha(N2w: 60. 89ha, N2es: 7.02ha) for the 5th class(N2). The classes under the 3rd class(including the 3rd class) were determined as an unfair area, and proposed landscape enhancement for them. Second, it was proposed that unfair areas with potential water hazards(N1 w, N2w) be restored as a wetland and buffer zone. At this point, the farmers owning these fields could be compensated using the direct payment for landscape conservation(DPLC). Areas witha relatively lower slope(S3e) or a steep slope(N1e) containing soil erodibility potential were proposed to be restored as a sod-culture-applied field and substitute vegetation or potentially natural vegetation, respectively. The unfair areas having fallow potential(S3s, N1es, N2es) were proposed to apply special use crops for the S3s fields, native plants for the N1es fields, and intended fallow for the N2es fields. Third, after landscape enhancement, theforest had higher values in the indices of NP, PLAND, LSI, IJI, and TCA, while paddy and upland had lower values in most indices except NP and LSI. The forest patches increased and were more plentiful with their restoration and had much greater possibility to join with nearby patches. With continued restoration, forest patches will have a large core area and small number of patches due to the conglomeration of patches, which positively influences the species of diversity in the forest patches.

Studies on the Natural Distribution and Ecology of Ilex cornuta Lindley et Pax. in Korea (호랑가시나무의 천연분포(天然分布)와 군낙생태(群落生態)에 관한 연구(研究))

  • Lee, Jeong Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.62 no.1
    • /
    • pp.24-42
    • /
    • 1983
  • To develop Ilex cornuta which grow naturally in the southwest seaside district as new ornamental tree, the author chose I. cornuta growing in the four natural communities and those cultivated in Kwangju city as a sample, and investigated its ecology, morphology and characteristics. The results obtained was summarized as follows; 1) The natural distribution of I. cornuta marks $35^{\circ}$43'N and $126^{\circ}$44'E in the southwestern part of Korea and $33^{\circ}$20'N and $126^{\circ}$15'E in Jejoo island. This area has the following necessary conditions for Ilex cornuta: the annual average temperature is above $12^{\circ}C$, the coldness index below $-12.7^{\circ}C$, annual average relative humidity 75-80%, and the number of snow-covering days is 20-25 days, situated within 20km of from coastline and within, 100m above sea level and mainly at the foot of the mountain facing the southeast. 2) The vegetation in I. cornuta community can be divided that upper layer is composed of Pinus thunbergii and P. densiflora, middle layer of Eurya japonica var. montana, Ilex cornuta and Vaccinium bracteatum, and the ground vegetation is composed of Carex lanceolata and Arundinella hirta var. ciliare. The community has high species diversity which indicates it is at the stage of development. Although I. cornuta is a species of the southern type of temperate zone where coniferous tree or broad leaved, evergreen trees grow together, it occasionally grows in the subtropical zone. 3) Parent rock is gneiss or rhyolite etc., and soil is acidic (about pH 4.5-5.0) and the content of available phosphorus is low. 4) At maturity, the height growth averaged $10.48{\pm}0.23cm$ a year and the diameter growth 0.43 cm a year, and the annual ring was not clear. Mean leaf-number was 11.34. There are a significant positive correlation between twig-elongation and leaf-number. 5) One-year-old seedling grows up to 10.66 cm (max. 18.2 cm, min. 4.0 cm) in shoot-height, with its leaf number 12.1 (max. 18, min), its basal diameter 2.24 mm (max. 4.0 mm, min. 1.0 mm) and shows rhythmical growth in high temperature period. There were significant positive correlations between stalk-height and leaf-number, between stalk-height and basal-diameter, and between number and basal diameter. 6) The flowering time ranged from the end of April to the beginning of May, and the flower has tetra-merouscorella and corymb of yellowish green. It has a bisexual flower and dioecism with a sexual ratio 1:1. 7) The fruit, after fertilization, grows 0.87 cm long (0.61-1.31 cm) and 0.8 cm wide (0.62-1.05 cm) by the beginning of May. Fruits begin to turn red and continue to ripen until the end of October or the beginning of November and remain unfading until the end of following May. With the partial change in color of dark-brown at the beginning of the June fruits begin to fall, bur some remain even after three years. 8) The seed acquision ratio is 24.7% by weight, and the number of grains per fruit averages 3.9 and the seed weight per liter is 114.2 gram, while the average weight of 1,000 seeds is 24.56 grams. 9) Seeds after complete removal of sarcocarp, were buried under ground in a fixed temperature and humidity and they began to develop root in October, a year later and germinated in the next April. Under sunlight or drought, however, the dormant state may be continued.

  • PDF