DOI QR코드

DOI QR Code

Effect of thinning ratio on the forest environment and fruiting of ectomycorrhizal mushrooms in a Pinus densiflora stand

소나무림에서 간벌률이 산림 내 환경과 외생균근성 버섯 발생에 미치는 영향

  • Yong-Woo Park (Chungcheongbukdo Forest Environment Research Center) ;
  • Jin-Gun Kim (Department of Forest Science, Chungbuk National University) ;
  • Hwayong Lee (Department of Forest Science, Chungbuk National University)
  • Received : 2023.03.10
  • Accepted : 2023.03.20
  • Published : 2023.03.31

Abstract

To investigate the effect of thinning intensity on environmental factors and ectomycorrhizal mushroom fruiting in forest ecosystems, we studied canopy closure, throughfall, soil temperature, soil moisture, light response of understory vegetation, and ectomycorrhizal mushroom fruiting in a 10-year-old pine forest after 34%, 45%, and 60% thinning. Canopy closure was significantly higher in the 34% treatment and control plots, ranging from 80-85% in April. However, in November, all thinning treatment plots showed a decrease of approximately 5-10% compared with the control plot. The 60% treatment plot had over 200 mm of additional throughfall compared with the control plot, and monthly throughfall was significantly higher by more than 100 mm in October. The soil temperature in each treatment plot increased significantly by up to 1℃ or more compared with the control plot as the thinning rate increased. The soil moisture increased by more than 5% in the thinning treatment plots during rainfall, particularly in the 34% treatment plot, where the rate of moisture decrease was slower. The photosynthetic rate of major tree species (excluding Pinus densiflora)was highest in Quercus mongolica, with a rate of 7 µmolCO2·m-2·s-1. At a lightintensity of 800 μmol·m-2·s-1, Q. mongolica showed the highest photosynthetic level of 6 ± 0.3 μmolCO2·m-2·s-1 in the 45% treatment. The photosynthetic rate of Fraxinus sieboldiana and Styrax japonicus increased as the thinning intensity increased. The Shannon-Wiener index of mycorrhizal mushrooms did not significantly differ among treatments, but the fresh weight of mushrooms was approximately 360-840 g higher in the 34% and 45% treatments than in the control. Additionally, the fresh weight of fungi in the 60% treatment was 860 g less than that in the control. There were more individuals of Amanita citrina in the control than in the thinning treatment, while Suillus bovinus numbers increased by more than 10 times in the 34% thinning treatment compared with the control.

간벌률이 산림 내에서 환경 요인과 외생균근성 버섯 발생에 미치는 영향을 알아보기 위해 34%, 45%, 60%의 간벌 처리 후 10년이 지난 소나무림에서 수관 울폐율, 수관 통과우량, 토양 온도, 토양 수분량, 하층 식생의 광반응과 외생균근성 버섯 발생 특징을 조사하였다. 수관 울폐율은 4월에 34% 처리구와 대조구가 80~85%로 유의적으로 높았고 11월에는 모든 간벌 처리구들이 대조구에 비하여 5~10%가량 낮아졌다. 60% 처리구의 수관통과우량은 대조구에 비하여 총 200 mm이상 많았으며 월별 수관통과 우량은 10월에 100 mm 이상 큰 차이가 나타났다. 각 처리구의 토양 온도는 60% 처리가 45% 처리에 비하여 0.3~0.5℃ 정도 높아 큰 차이는 없었으나 대조구와는 1℃이상 유의적으로 높아졌다. 간벌 처리구에서 강우 시 토양 수분량이 5% 이상 더 증가하며 34% 처리구에서는 수분 감소 속도도 느려졌다. 소나무를 제외한 주요 수종의 광합성량은 신갈나무가 7 µmolCO2·m-2·s-1로 가장 많았다. 800 µmol·m-2·s-1의 동일한 광도에서 신갈나무는 45% 처리구에서 6±0.3 µmolCO2·m-2·s-1로 가장 높은 광합성 수준을 보여주었으며 때죽나무와 쇠물푸레는 간벌률이 높을수록 광합성량이 증가하였다. 균근성 버섯의 SWI에서 종수는 각 처리구간에는 큰 차이가 나타나지 않았으나 버섯의 발생량은 34%와 45% 처리구가 대조구에 비하여 약 360~840 g 더 많이 발생하였고 60% 처리구에서는 대조구에 비하여 860 g 더 적은 양이 발생하였다. 특정 종에 따라 애광대버섯은 대조구가 간벌 처리구에 비하여 더 많은 개체수가 발생하였으나 황소비단그물버섯은 34% 간벌 처리구가 대조구에 비하여 10배 이상 증가하였다. 이상의 결과를 통하여 소나무림에서 간벌률에 따른 수관 울폐율의 감소는 산림 내에 광량과 수관통과우량을 증가시키며 토양 온도 상승 및 토양 수분량의 증가와 하층 식생의 광합성량을 증가시켜 특정 버섯의 발생량 변화에 영향을 주는 것으로 추정된다. 그러나 산림생태계의 복잡성을 고려할 때 간벌과 버섯 발생에 대한 정확한 상관관계를 알기 위해서는 장기간의 연구가 지속되어야 할 것으로 생각된다.

Keywords

Acknowledgement

본 연구는 산림청(한국임업진흥원) 산림과학기술 연구개발사업'(FTIS 2014068E10-1819-AA03)'의 지원에 의하여 이루어진 것입니다.

References

  1. Breda N, Granier A, Aussenac G. 1995. Effects of thinning on soil and tree water relations, transpiration and growth in oak forest (Quercus petraea(Matt.) Liebl.). Tree Physiol 15(5): 295-306. https://doi.org/10.1093/treephys/15.5.295
  2. Breitenbach J, Kranzlin F. 1991. Fungi of Switzerland vol 3 Boletes and Ararics, 1st part. Sticher Printing, AG, Lucerne, Switzerland.10-361.
  3. Caihong Z, Nier S, Hao W, Honglin X, Hailong S, Ling Y. 2023. Effects of thinning on soil nutrient availability and fungal community composition in a plantation medium-aged pure forest of Picea koraiensis. Sci Rep 13(1): 2492.
  4. Choi HP. 2015. An illustrated mushroom book. Academic book. Seoul. 5-981.
  5. Choi JW, Lee EH, Eo JK, Koo CD, Eom AH. 2014. Community changes of ectomycorrhizal fungi by thinning in a forest of Korea. Kor J Mycol 42(2): 133-137. https://doi.org/10.4489/KJM.2014.42.2.133
  6. Chong SH, Won KR, Hong NE, Park BS, Lee KJ, Byeon HS. 2014. Bending and compressive strength properties of Larix kaempferi according to thinning intensity. J Korean Wood Sci Technol 42(4): 385-392.
  7. Daniel MD, Melanie DJ, Kathy JL. 2005. Effects of forest management on fungal communities. In : Dighton J & White JF (eds.) The fungal community: its organization and role in the ecosystem (3rd ed.), Taylor & Francis Group, CRC Press, Boca Raton. USA. 833-847.
  8. Fogel R. 1980. Mycorrhizae and nutrient cycling in natural forest ecosystems. New Phytol 86(2): 199-212. https://doi.org/10.1111/j.1469-8137.1980.tb03189.x
  9. Jin HO, Son YW. 2007. Nutrient dynamics and water quantity of throughfall and stemflow in natural oak stands in Korea. Kor J Agri For Meteorol 9(1): 61-70. https://doi.org/10.5532/KJAFM.2007.9.1.061
  10. Kim HJ, Chung JC, Jang SK, Jang KK. 2013. Distribution of ectomycorrhizal fruit bodies according to forest fire area. Kor J Ecol Environ 46(2): 251-264. https://doi.org/10.11614/KSL.2013.46.2.251
  11. Kim JY, Lee KJ. 2012. Vegetational structure and the density of thinning for the inducement of the ecological succession in artificial forest, national parks-In case of Chiaksan, Songnisan, Deogyusan, and Naejangsan. Kor J Environ Ecol 26(4): 604-619.
  12. Kim KH, Jeong YH, Jeong CG. 2003. Effects of thinning and pruning on net rainfall and interception loss in Abies holophylla. J Kor For Soc 92(3): 276-283.
  13. Kim YS, Seok SJ, Lee KJ, Hyun JO. 1994. Notes on the higher fungal flora in Mt. Hungjung in Kangwon province. Kor J Mycol 22(3): 216-221.
  14. Koo CD, Ka KH, Park WC, Park H, Ryu SR, Park YW, Kim TH. 2007. Changes of leaf area index, physiological activities and soil water in Tricholoma matsutake producing pine forest ecosystem. J Kor Soc For Sci 96(4): 438-447.
  15. Lee JY, Han SH, Kim SJ, Lee SH, Son YM, Son YH. 2015. A meta-analysis on the effect of forest thinning on diameter growth and carbon stocks in Korea. J Kor Soc For Sci 104(4): 527-535. https://doi.org/10.14578/jkfs.2015.104.4.527
  16. Lee SH, Kim JS, Kim HE, Koo CD, Park JI, Shin CS, Shin WS. 2005. Effect of soil moisture and weather (atmospheric) conditions on the fruiting of Sarcodon aspratusin oak stand. J Kor Soc For Sci 94(6): 370-376.
  17. Lee SY, Lee MW, Yeom CH, Kwon CG, Lee HP. 2009. Comparative analysis of forest fire danger rating on forest characteristics of thinning area and non-thinning area on forest fire burnt area. Fire Sci Eng 23(4): 32-39.
  18. Martinez-Pena F, De-Miguel S, Pukkala T, Boney JA, Ortega-Martinez P, Aldea J, de Aragon JM. 2012. Yield models for ectomycorrhizal mushrooms in Pinus sylvestris forests with special focus on Boletus edulis and Lactarius group deliciosus. For Ecol Manag 282(2012): 63-69. https://doi.org/10.1016/j.foreco.2012.06.034
  19. Molles MC. 2006. Ecology: Concepts and Applications (4thed.). The McGraw-Hill Companies. New York. 5-592.
  20. Park JH. 2004. A study of influence of forest management practices on the soil physical properties and facility of purifying water quality in Pinus rigida stands (I). J Kor For Soc 93(1): 1-9.
  21. Park WH, Lee HD. 2005. Wild fungi of Korea. Kyo-hak Publishing Co. Seoul. 1-508
  22. Prevost M. 2008. Effect of cutting intensity on microenvironmental conditions and regeneration dynamics in yellow birch-conifer stands. Canadian J For Res 38(2): 317-330. https://doi.org/10.1139/X07-168
  23. Reschke K, Noordeloos ME, Manz C, Hofmann TA, Rodriguez-Cedeno J, Dima B, Piepenbring M. 2022. Fungal diversity in the tropics: Entoloma spp. in Panama. Mycol Prog 21(1): 93-145. https://doi.org/10.1007/s11557-021-01752-2
  24. Rokuya I, Yoshio O, Tsuguo H. 2012. Japanese mushrooms. Yama-kei Publishers. Tokyo. 1-639.
  25. Savoie JM, Largeteau ML. 2011. Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol Biotechnol 89(4): 971-979. https://doi.org/10.1007/s00253-010-3022-4
  26. Seok SJ, Lim YW, Kim CM, Ka KH, Lee JS, Han SK, Kim SO, Her JS, Hyun IH, Hong SG, Kim YS. 2013. List of mushrooms in Korea. Seoul: Korean Society of Mycology 4(1): 1-576.
  27. Shaw P, Kibby C, Maves J. 2003. Effects of thinning treatment on an ectomycorrhizal succession under Scots pine. Mycol Res 107(3): 317-328. https://doi.org/10.1017/S0953756203007238
  28. Sim KM, Ko CS, Lee YS, Kim GY, Lee JT, Kim SJ. 2007. Correlation coefficients between pine mushroom emergence and meteorological elements in Yangyang county Korea. Kor J Agri For Meteorol 9(3): 188-194. https://doi.org/10.5532/KJAFM.2007.9.3.188
  29. Son Y, Lee YY, Jun YC, Kim ZS. 2004. Light availability and understory vegetation four years after thinning in a Larix leptolepis plantation of central Korea. J For Res 9(2): 133-139. https://doi.org/10.1007/s10310-003-0071-x
  30. Teste FP, Lieffers VJ, Strelkov SE. 2012. Ectomycorrhizal community responses to intensive forest management: thinning alters impacts of fertilization. Plant Soil 360:333-347. https://doi.org/10.1007/s11104-012-1231-6
  31. Usman M, Ho-Plagaro T, Frank HE, Calvo-Polanco M, Gaillard I, Garcia K, Zimmermann SD. 2021. Mycorrhizal symbiosis for better adaptation of trees to abiotic stress caused by climate change in temperate and boreal forests. Front For Glob Change 4;742392;10.3389/ffgc.2021.742392.
  32. Van Elsas JD, Trevors JT. 1997. Modern soil microbiology. Marcel Dekker, Inc. New York. 1-683.
  33. Weaver W, Shannon CE. 1963. The mathematical theory of communication. 1949. University of Illinois Press. Urbana. 1-144.
  34. White TJ, Bruns T, Lee SJWT, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In Innis M, Gelfand D, Sninsky J, White T(eds.), PCR protocols : A guide to methods and applications. Academic Press, San Diego. 18(1): 315-322.
  35. Zhou Z, Wang C, Ren, C, Sun Z. 2020. Effects of thinning on soil saprotrophic and ectomycorrhizal fungi in a Korean larch plantation. For Ecol Manag 461: 117920.