• Title/Summary/Keyword: IMO Regulations

Search Result 140, Processing Time 0.025 seconds

Numerical Analysis Study on the Turbulent Flow Characteristics around the Rotor Sail for Vessels (선박용 로터세일 주위의 난류 유동특성에 관한 수치해석적 연구)

  • Kim, Jung-eun;Cho, Dae-Hwan;Lee, Chang-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.648-656
    • /
    • 2022
  • As environmental regulations such as the International Maritime Organization (IMO)'s strategy to reduce greenhouse gases(GHG) are strengthened, technology development such as eco-friendly ships and alternative fuels is expanding. As part of this, ship propulsion technology using energy reduction and wind propulsion technology is emerging, especially in shipping companies and shipbuilders. By securing wind propulsion technology and introducing empirical research into shipbuilding and shipping, a high value-added market using eco-friendly technology can be created. Moreover, by reducing the fuel consumption rate of operating ships, GHG can be reduced by 6-8%. Rotor Sail (RS) technology is to generate a hydrodynamic lift in the vertical direction of the cylinder when the circular cylinder rotates at a constant speed and passes through the fluid. This is called the Magnus effect, and this study attempted to propose a plan to increase propulsion efficiency through a numerical analysis study on turbulence flow characteristics around RS, a wind power assistance propulsion system installed on a ship. Therefore, CL and CD values according to SR and AR changes were derived as parameters that affect the aerodynamic force of the RS, and the flow characteristics around the rotor sail were compared according to EP application.

A Study on the Busan Port Selection Factor Changes of Shipping Companies in the Post-Corona Era (포스트 코로나 시대 선사들의 부산항 선택요인 변화분석)

  • Sim, Min-Seop;Kim, Joo-Hye;Kim, Yul-Seong;Nam, Hyung-Sik
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.216-226
    • /
    • 2022
  • The industry trends of major global shipping and ports in the world are changing rapidly because of the spread of COVID-19, resulting in the reorganization of GVCs by global companies, and strengthening of environmental regulations by IMO. Based on these environmental changes, Busan Port was ranked 5th in the global container port rankings in 2013. However, since the outbreak of COVID-19, Busan Port's global container port ranking in 2020 fell to 7th, behind Qingdao Port. In the post-Corona era, for Busan Port to compete with global container ports and gain a competitive edge in the port, it is necessary to accurately identify the competitive factors of Busan Port and establish a comprehensive policy. Thus, the purpose of this study was to analyze how the competitive factors of Busan Port have changed in the selection of ports by current global shipping companies, compared to the first study conducted in 2005. Additionally, a comprehensive policy plan was established by identifying factors impacting the frequency of future calls as well as the growth potential of Busan Port, through a stepwise multiple regression analysis. As a result of the analysis, it was found that the call preference and growth potential of Busan Port in the post-Corona era are most affected by 'port facilities'. And it was found that the calls frequency in the future is most impacted by 'the geopolitical location' factor.

Current Status and Improvement Measures for the Port State Control of Foreign Vessels in Domestic Port Calls (국내 기항 외국적 외항선 항만국통제 현황 및 개선방안)

  • Jeong, Kyu-Min;Hwang, Je-Ho;Kim, Si-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.338-343
    • /
    • 2022
  • As the revitalization of the global maritime industry continues, the number of foreign ships navigating the maritime territories of maritime neighboring countries has rapidly increased. However, large-scale marine accidents have occurred, caused by the insufficient establishment of a system for management and operation relative to vessels' safety-condition. To address that, the IMO has granted the right to exercise port state control, especially for foreign vessels, to countries with jurisdiction over maritime territories with strengthening regulations and guidelines. In particular, the Republic of Korea, as a member of the TOKYO MOU, is conducting PSC, but as of 2020, the proportion of foreign ships was three times higher than that of national ships that called in domestic ports. However, the inspection rate was low at 9% which has not met the recommended level by the TOKYO MOU. Thus, this study conducted an IPA analysis as well as content analysis, by collecting the practical opinions and views of PSCO through objective questionnaires and written expert interviews, for improving the efficiency and effectiveness of domestic PSC. As a result, it was derived that the importance and performance related to human factors such as life on board, working environment, and response to safety accidents should be improved in to raise the quality of PSC inspection. Additionally, the work environment and performance of PSC in domestic ports for foreign vessels could be improved, if multifaceted support bases are established, for administrative unification of related tests for PSC, recruitment of PSCO, activation of the defection-reporting system, reorganization of the PSC execution group, etc.

A Study on the Design of Training Contents for LNG Bunkering Workers (LNG 벙커링 종사자 교육 콘텐츠 설계에 관한 연구)

  • Yoo, Hyoung-Soo;Roh, Beom-Seok;Kang, Suk-Yong;Seo, Seong-Min;Jung, Dong-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.809-818
    • /
    • 2022
  • The number of ships using liquefied natural gas (LNG) as fuel is increasing to respond to the International Maritime Organization's (IMO) air pollutant emission regulations. At the same time, the need to expand LNG bunkering infrastructure for stable fuel supply and demand for ships is emerging. LNG bunkering is carried out in three ways: truck to ship (TTS), pipe to ship (PTS), and ship to ship (STS). In foreign countries, all three methods are being carried out, but in Korea, LNG bunkering is carried out only with the TTS method owing to the lack of infrastructure. LNG bunkering is a high-risk operation. For safe bunkering operations, the competence of the workers is extremely important, and a professional training course is required to strengthen the competence. This study was conducted to design training contents for LNG bunkering workers for fostering LNG bunkering experts and performing safe and systematic bunkering work. To this end, the current status of LNG-fueled ships and bunkering was identified, and related domestic and abroad educational contents were analyzed. In addition, opinions on the importance of educational contents were collected through expert questionnaires. Consequently, we designed training contents suitable for various training targets and divided them into basic and advanced training courses, with a duration of 4 days, and proposed. Based on the designed training contents, if additional research is conducted by sufficiently reflecting Korea's bunkering environment, it will be of great help to improve the competence of LNG bunkering workers and to foster human resources.

A Study on Forecasting of the Manpower Demand for the Eco-friendly Smart Shipbuilding (친환경 스마트 선박 인력 수요예측에 관한 연구)

  • Shin, Sang-Hoon;Shin, Yong-John
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.1-13
    • /
    • 2023
  • This study forecasted the manpower demand of eco-friendly smart shipbuilding, whose importance and weight are increasing according to the environmental regulations of the IMO and the spread of the 4th industrial revolution technology. It predicted the shipbuilding industry manpower by applying various models of trend analysis and time series analysis based on data from 2000 to 2020 of Statistics Korea. It was found that the prediction applying geometric mean had the smallest gap among the trend and time series analysis methods in comparing between forecast results and actual data for the past 5 years. Therefore, the demand for manpower in the shipbuilding industry was predicted by using the geometric mean method. In addition, the manpower demand of smart eco-friendly ships wast forecasted by using the 2018 and 2020 manpower survey results of the Ministry of Trade, Industry and Energy and reflecting the trend of manpower increase in the shipbuilding industry. The result of forecasting showed that 62,001 person in 2025 and 85,035 people in 2030. This study is expected to contribute to the adjustment of manpower supply and demand and the training professional manpower in the future by increasing the accuracy of forecasting for high value-added eco-friendly smart ships.

Analysis of the long-term equilibrium relationship of factors affecting the volatility of the drybulk shipping market (건화물선 해운시장의 변동성에 영향을 미치는 요인들의 장기적 균형관계 분석)

  • Lee, Choong-Ho;Park, Keun-Sik
    • Journal of Korea Port Economic Association
    • /
    • v.39 no.2
    • /
    • pp.41-57
    • /
    • 2023
  • The drybulk shipping market has high freight rate volatility in the chartering market and various and complex factors affecting the market. In the unstable economic situation caused by the COVID-19 pandemic in 2020, the BDI plunged due to a decrease in trade volume, but turned from the end of 2020 and maintained a booming period until the end of 2022. The main reason for the market change is the decrease in the available fleet that can actually be operated for cargo transport due to port congestion by the COVID-19 pandemic, regardless of the fleet and trade volume volatility that have affected the drybulk shipping market in the past. A decrease in the actual usable fleet due to vessel waiting at port by congestion led to freight increase, and the freight increase in charting market led to an increase in second-hand ship and new-building ship price in long-term equilibrium relationship. In the past, the drybulk shipping market was determined by the volatility of fleet and trade volume. but, in the future, available fleet volume volatility by pandemics, environmental regulations and climate will be the important factors affecting BDI. To response to the IMO carbon emission reduction in 2023, it is expected that ship speed will be slowed down and more ships are expected to be needed to transport the same trade volume. This slowdown is expected to have an impact on drybulk shipping market, such as a increase in freight and second-hand ship and new-building ship price due to a decrease in available fleet volume.

Towards Safety Based Design Procedure for Ships

  • Bakker, Marijn;Boonstra, Hotze;Engelhard, Wim;Daman, Bart
    • Journal of Ship and Ocean Technology
    • /
    • v.5 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • Present-day rules and regulations for the design and construction of ships are almost without exemption of a prescriptive and deterministic nature. Often it is argued that this situation is far from ideal; it does no right to the advances, which have been made during the past decades in engineering tools in marine technology, both in methodology and in computational power. Within IMO this has been realized for some time and has resulted in proposals to use Formal Safety Assessment(FSA) as a tool to improve and to modernize the rule making process. The present paper makes use of elements of the FSA methodology, but instead of working towards generic regulations or requirements, a Risk Assessment Approach, not unlike a 'safety case'; valid for a certain ship or type of ship is worked out. Delft University of Technology investigated the application of safely assessment procedures in ship design, in co-operation with Anthony Veder Shipowners and safety experts from Safely Service Center BV. The ship considered is a semi-pressurized-fully refrigerated LPG carrier. On the basis of the assumption that a major accident occurs, various accident, scenarios were considered and assessed, which would impair the safety of the carrier. In a so-called Risk Matrix, in which accident frequencies versus the consequence of the scenarios are depicted, the calculated risks all appeared lo be in the ALARP('as low as reasonable practicable') region. A number of design alternatives were compared, both on safety merits and cost-effectiveness. The experience gained with this scenario-based approach will be used to establish a set of general requirements for safety assessment techniques in ship design. In the view that assessment results will be most probably presented in a quasi-quantified manner, the requirements are concerned with uniformity of both the safety assessment. These requirements make it possible that valid comparison between various assessment studies can be made. Safety assessment, founded on these requirements, provides a validated and helpful source of data during the coming years, and provides naval architects and engineers with tools experience and data for safety assessment procedures in ship design. However a lot of effort has to be spent in order to make the methods applicable in day-to-day practice.

  • PDF

Hull Form and Layouts of 740-ton Replacement Vessel for R/V Eardo of KIOST: Ship Design and SMRs (740톤급 종합해양연구선 이어도호 대체선 선형 및 설계 특성)

  • Park, Cheong Kee;Park, Dong-Won;Lee, Gun Chang;Kim, Young Jun;Min, Young Ki
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.171-178
    • /
    • 2020
  • R/V EARDO, commissioned in 1992, has successfully carried out ocean research campaigns in Korean jurisdictional and adjacent waters, including continental margins and coastal zones within the Korean Exclusive Economic Zone (EEZ), for 29 years. However, it will soon be reaching the end of its useful service life. A replacement for R/V EARDO is urgently needed to ensure the safety of vessel itself and its crews, and efficient ship operation and maintenance, as well as to meet modern scientific mission requirements (SMRs). Basic specifications for a replacement ship have been devised and reviewed over the past nine months. A test of the proposed hull form was also performed. The total tonnage of the proposed vessel is approximately 740 tons, and the overall length and width are 62.0 and 11.6 m, respectively. The new ship will thus be 73% larger than the current R/V EARDO; in particular, the research workspace will be 4.4 times larger. The major design priorities are the propulsion system, efficiency of radiated noise and vibration control, and the dynamic positioning system. An environmentally friendly emission system, meeting International Maritime Organization (IMO) Tier III regulations, will be installed in the third exhaust pipe. Various wet and dry lab spaces as well as 32 different scientific instruments have also been considered in the ship design.

Parametric Investigation of BOG Generation for Ship-to-Ship LNG Bunkering

  • Shao, Yude;Lee, Yoon-Hyeok;Kim, You-Taek;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • As a fuel for ship propulsion, liquefied natural gas (LNG) is currently considered a proven and reasonable solution for meeting the IMO emission regulations, with gas engines for the LNG-fueled ship covering a broad range of power outputs. For an LNG-fueled ship, the LNG bunkering process is different from the HFO bunkering process, in the sense that the cryogenic liquid transfer generates a considerable amount of boil-off gas (BOG). This study investigated the effect of the temperature difference on boil-off gas (BOG) production during ship-to-ship (STS) LNG bunkering to the receiving tank of the LNG-fueled ship. A concept design was resumed for the cargo/fuel tanks in the LNG bunkering vessel and the receiving vessel, as well as for LNG handling systems. Subsequently, the storage tank capacities of the LNG were $4,500m^3$ for the bunkering vessel and $700m^3$ for the receiving vessel. Process dynamic simulations by Aspen HYSYS were performed under several bunkering scenarios, which demonstrated that the boil-off gas and resulting pressure buildup in the receiving vessel were mainly determined by the temperature difference between bunkering and the receiving tank, pressure of the receiving tank, and amount of remaining LNG.

A Study on the Establishment of VTS Service Area in Pohang (포항항의 VTS 서비스구역 설정에 관한 연구)

  • 박진수;김준옥
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.6 no.2
    • /
    • pp.1-15
    • /
    • 2000
  • In world trade, the vessel traffic in major routes has been congested due to the rapid increase of cargoes and shipping tonnages. The patterns of vessel traffic have also been complicated and diversified. Therefore it was necessary that the Vessel Traffic Service(VTS) should be established in order to enhance the safety of navigation, to prevent the loss of life and damage to the environment. The first advanced radar surveillance system(LevelIII-VTS) was introduced in Pohang, Korea in 1993 and in 13 other ports later. While the hardware of Korea VTS is equal to that of an advanced country, the software, specially the operation manual, the recruitment and education of VTS operator, and the VTS service area is behind that of Russia, USA, Germany, Hong Kong, Singapore and others. After researching and investigating. the VTS equipment and service area of many countries, and analyzing the IMO regulations relevant to VTS and the traffic pattern and accident of Pohang port, the most efficient VTS service area should be established in Pohang. According to the analysis of the preceding studies and research on VTS, the worldwide VTS areas are recognized under the following conditions: First, the service area should be extended over at least radar coverage taking into account of traffic flow, traffic density, the degree of danger to navigation and harbour condition in order to provide all possible services. Second, the established service area should be subdivided and systematized to render reliable VTS services, such as the allocation of VHF frequency and reporting procedure in each area. In conclusion, the VTS service area of Pohang must be established and operated over 10 miles from shore(radar site) covering the radar coverage, so as to include the area of traffic congestion and high density traffic flow.

  • PDF