In a multi-sensor target tracking systems, the local sensors have the role of tracking the target and transferring the measurements to the fusion center. The measurements from the same target can arrive out of sequence called, the out-of-sequence measurements(OOSMs). The OOSM can arise in a form of single-lag or multi-lag throughout the transfer at the fusion center. The recursive retrodiction step was proposed to update the current state estimates with the multi-lag OOSM from the several previous papers. The real world has the possible situations that the maneuvering target informations can arrive at the fusion center with the random clutter in the possible OOSMs. In this paper, we incorporate the IMM-MPDA(Interacting Multiple Model - Most Probable Data Association) into the multi-lag OOSM update. The performance of the IMM-MPDA filter with multi-lag OOSM update is analyzed for the various clutter densities, OOSM lag numbers, and target maneuvering indexes. Simulation results show that IMM-MPDA is sufficient to be used in out of sequence environment and it is necessary to correct the current state estimates with OOSM except a very old OOSM.
본 논문에서는 시변가산유색잡음에 오염된 음성신호의 향상을 위한 MIMM(mixture interacting multiple model) 알고리즘을 제안 한다. 제안된 방법에서 음성신호는 혼합 은닉필터모델(hidden filter model: HFM)로 모델링되며, 잡음신호는 하나의 은닉필터로 모델링 된다. MIMM 알고리즘은 혼합 은닉필터모델에 의한 다중 Kalman 필터링에 기초한 회귀계산이기 때문에 계산량이 많아, Kalman 필터링 식의 구조적 측면에서 효율적인 계산이 가능하도록 알고리즘을 구현했다. 시뮬레이션 결과, 제안된 방법이 기존의 결과 [4,5]에 비하여 성능향상이 이루어 졌음을 보여 준다.
항공기 전면에 장착되는 레이돔은 표적을 탐색 및 추적하는 데에 있어서 기동 중에 발생하는 다양한 이유로 굴절오차를 야기할 수 있다. 이러한 굴절오차는 마이크로파 탐색기가 허상표적을 탐지하고 있는 것을 의미한다. 3차원 공간상에서 항공기에 장착된 레이돔의 굴절률을 추정하는 목적으로 일반적으로 알려진 상호작용 다중모델(Interactive Multiple Model, IMM) 알고리듬을 적용한다. 하지만, 레이돔 굴절률과 같은 불확실한 시스템 모델의 계수를 추정할 수 있음에도 예측값의 범위를 벗어날 때에는 추정 성능을 보장할 수 없다. 본 논문에서는 레이돔 굴절률의 예측값을 IMM 알고리듬의 모드 계수로 두고 예측값을 갱신하는 방법을 제안하며, 제안한 방법의 레이돔 굴절률 추정 성능을 확인한다.
In order to estimate the launch point of a high-speed vehicle, predicting the various characteristics of the vehicle's movement, such as drag and thrust, must be preceded by the estimation. To predict the various parameters regarding the vehicle's characteristics, we build the IMM filter specialized in predicting the parameters of the post-launch phase based on flight dynamics. Then we estimate the launch point of the high-speed vehicle using Inverse Dynamics. In addition, we assume the arbitrary error level of the radar for accuracy of the prediction. We organize multiple-dimensioned IMM structures, and figure out the optimal value of parameters by comparing the various IMM structures. After deriving the optimal value of parameters, we verify the launch point estimation error under certain error level.
비정상 잡음에 오염된 음성신호의 향상을 위하여 혼합 은닉필터모델 (HFM: Hidden Filter Model)에 기초한 기법을 제안하였다. 오염된 음성신호를 선형상태방정식으로 모델링하고 파라미터는 마코프 모델에 따른다고 가정하였다. 이 파라미터들은 잡음에 오염되지 않은 학습신호로부터 추정할 수 있다. 추정과정은 혼합 상호복합모델 (IMM: Interacting Multiple Model)에 기초하여 이루어지며, 음성신호의 추정값은 상호작용하는 병렬의 칼만 필터들의 가중합으로 주어진다. 실험결과로부터 제안한 방법의 성능이 기존의 방법에 비해 개선되었음을 확인할 수 있었다.
In this paper, an integrated design of fault detection, diagnosis and reconfigurable control tot multi-input and multi-output system is proposed. It is based on the interacting multiple model estimation algorithm, which is one of the most cost-effective adaptive estimation techniques for systems involving structural and/or parametric changes. This research focuses on the method to recover the performance of a system with failed actuators by switching plant models and controllers appropriately. The proposed scheme is applied to a fault tolerant control design for flight control system.
In this paper, we propose an interacting multiple model (IMM) method using intelligent tracking filter with fuzzy gain to reduce tracking errors for maneuvering targets. In the proposed filter, to exactly estimate for each sub-model, we propose the fuzzy gain based on the relation between the filter residual and its variation. To optimize each fuzzy system, we utilize the genetic algorithm (GA). Finally, the tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and input estimation (IE) method through computer simulations.
In a target tracking problem the radar glint noise has non-Gaussian heavy-tailed distribution and will seriously affect the target tracking performance. In most nonlinear situations an Extended Robust Kalman Filter(ERKF) can yield acceptable performance as long as the noises are white Gaussian. However, an Extended Robust $H_{\infty}$ Filter (ERHF) can yield acceptable performance when the noises are Laplacian. In this paper, we use the Interacting Multiple Model(IMM) estimator for the problem of target tracking with glint noise. In the IMM method, two filters(ERKF and ERHF) are used in parallel to estimate the state. Computer simulations of a real target tracking shows that hybrid filter used the IMM algorithm has superior performance than a single type filter.
The multiple targets tracking problem has been one of main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimension filter, input estimation filter, interacting multiple model (IMM) filter, federated variable dimension filter with input estimation, probable data association (PDA) filter etc. have been proposed to address the tracking and sensor fusion issues. In this paper, two existing tracking algorithms, i.e. the IMMPDA filter and the variable dimension filter with input estimation (VDIE), are combined for the purpose of improving the tracking performance of maneuvering targets in clutter. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns i.e. Waver, Pop-Up, and High-Diver motions, are defined and are applied to the modified IMMPDA filter considered as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMMPDA filter than the standard IMM filter are demonstrated through computer simulations.
본 논문에서는 새로운 방식의 적응형 순항제어 필터링 방식을 제안한다. 제안한 알고리즘은 선행 차량의 모드를 추정하는 문제를 분류기의 문제로 보고 신경망 분류기를 이용하여 이를 수행한다. 신경망은 각 모드에 대한 사후 확률을 출력하며 이를 IMM과 결합하여 선행차량의 추적을 수행한다. 끝으로 10가지 시나리오에 대하여 신경망 분류기와 IMM을 결합한 NIMM (Neural Network IMM)을 적용하여 성능을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.