• Title/Summary/Keyword: IM drive system

Search Result 63, Processing Time 0.023 seconds

A Fuzzy Current Controller using General Purposed Fuzzy Control Software Tool (범용 퍼지 지원 도구를 이용한 퍼지 전류제어기)

  • Min, Seong-Sik;Lee, Kyu-Chan;Song, Jhong-Whan;Cho, Kyu-Bok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.341-344
    • /
    • 1991
  • Current controlled pulse width modulation(PWM) for voltage source inverter(VSI) is one of the control method which controls the current directly so that we can perform vector control because it reduces the orders of differential equations of the induction machine. This paper propose a Fuzzy current controlled PWM which properly minimize a current ripple using Fuzzy theory in a constant switching frequency. This technique is applied to an electrical drive system with an induction machine(IM) by simulation. By comparison with the known classical method such as ramp comparison, hysteresis band method, our contribution shows the better performances.

  • PDF

A Study on the Sensorless Vector Control of IM using Adaptive Control (적응제어를 이용한 속도센서없는 유도전동기 벡터제어에 관한 연구)

  • Lee, Y.J.;Kim, H.J.;Oh, W.S.;Hong, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1196-1198
    • /
    • 1992
  • In field oriented control of Induction motors, speed sensor is required, which reduces the sturdiness of drive system and together with the expenditure of hardware for faultless transmission and processing of sensor signals it causes considerable expenses. These expensive sensors can be replaced by speed sensorless concept. And for good control, the knowledge of the rotor flux component of the rotor resistance are needs. Thus, this paper is based on a Extended Kalman Filter( EKF ) that estimates the state variables that are required for the control by only measuring the line voltages and currents of the machine. The rotor time constant and speed estimated by the EKF shows satisfactory agreement with the real values, with the simulation approaches.

  • PDF

Introduction to EEG-Based Brain-Computer Interface (BCI) Technology (뇌파 기반 뇌-컴퓨터 인터페이스 기술의 소개)

  • Im, Chang-Hwan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • There are a great numbers of disabled individuals who cannot freely move or control specific parts of their body because of serious neurological diseases such as spinal cord injury, amyotrophic lateral sclerosis, brainstem stroke, and so on. Brain-computer interfaces (BCIs) can help them to drive and control external devices using only their brain activity, without the need for physical body movements. Over the past 30 years, several Bel research programs have arisen and tried to develop new communication and control technology for those who are completely paralyzed. Thanks to the rapid development of computer science and neuroimaging technology, new understandings of brain functions, and most importantly many researchers' efforts, Bel is now becoming 'practical' to some extent. The present review article summarizes the current state of electroencephalogram (EEG)-based Bel, which have been being studied most widely, with specific emphasis on its basic concepts, system developments, and prospects for the future.

A Study on Current Source GTO Inverter by DC Link Inductance (직류 링크 인덕터에 의한 전류형 GTO 인버터의 특성고찰)

  • Choi, Sang-Won;Kim, Jin-Pyo;Yoon, Yong-Ki;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2169-2171
    • /
    • 1998
  • In order to improved the three phase GTO CSI of high efficiency IM drive with low loss commutation and snubber energy, we studied the energy recovery circuit to recover stored energy in clamping capacitor, dc link inductor and snubber capacitor, used an induction motor as the load of inverter. Specially, we investigated how dc input power is increased or decreased according to size of dc link inductor. The validity of this system is proved through experiment.

  • PDF

A study on the Vigilance Control of Syria Diesel Multiple Unit Train (시리아 디젤동차 운전자 경계장치에 대한 연구)

  • Son min-kyu;Im sung goun;Park Doo-man
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.299-304
    • /
    • 2005
  • A Vigilance control is a device fitted in the driving cab of a railway train to ensure that the driver is alert on the job. A simple vigilance control requires that the driver press a button at intervals not less than a certain amount and not more than another amount of time. If the driver fails to operate the vigilance control within those limits, a hooter sounds, and should the driver still doesn't operate the vigilance control then the brakes are applied. If the driver falls asleep or takes ill, then clearly such a vigilance control will sooner or later apply the brakes. The this vigilance control system which is applied to reduce the drive load at Syria diesel multiple unit train is proposed.

  • PDF

Real-Time Simulation of an Excavator Considering the Functional Valves of the MCV (MCV의 기능밸브를 고려한 굴삭기의 실시간 시뮬레이션)

  • Im, Yong-Hyeon;Lee, Sang-Wook;Cho, Min-Gi;Shin, Dae-Young;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.38-47
    • /
    • 2019
  • In this paper, a real-time simulation model of an excavator using Amesim was proposed, considered the operation of functional valves with the main control valve (MCV). The hydraulic system models including the pump and MCV have been developed. The kinematic and dynamic models of the manipulator have also been developed, to confirm the behavior of the excavator. The MCV model includes various functional valves such as the regenerative valves, holding valves, swing and boom priority valves, and regen-cut valves so that simulations similar to real excavators can be performed. Additionally, to obtain the real-time calculation performance, the parts with no major influence on the dynamic behavior were simplified, high frequency factors were removed, and parameters were optimized. The models were compared with each other through the numerical analysis with variable time-step and fixed time-step, and the results were verified by comparison with the results of the actual vehicle tests.

Speeding up the KLT Tracker for Real-time Image Georeferencing using GPS/INS Data

  • Tanathong, Supannee;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.629-644
    • /
    • 2010
  • A real-time image georeferencing system requires all inputs to be determined in real-time. The intrinsic camera parameters can be identified in advance from a camera calibration process while other control information can be derived instantaneously from real-time GPS/INS data. The bottleneck process is tie point acquisition since manual operations will be definitely obstacles for real-time system while the existing extraction methods are not fast enough. In this paper, we present a fast-and-automated image matching technique based on the KLT tracker to obtain a set of tie-points in real-time. The proposed work accelerates the KLT tracker by supplying the initial guessed tie-points computed using the GPS/INS data. Originally, the KLT only works effectively when the displacement between tie-points is small. To drive an automated solution, this paper suggests an appropriate number of depth levels for multi-resolution tracking under large displacement using the knowledge of uncertainties the GPS/INS data measurements. The experimental results show that our suggested depth levels is promising and the proposed work can obtain tie-points faster than the ordinary KLT by 13% with no less accuracy. This promising result suggests that our proposed algorithm can be effectively integrated into the real-time image georeferencing for further developing a real-time surveillance application.

A Study on the Development of Service Robot Control based on User Created Contents (User Created Contents 기반 서비스 로봇 제어의 개발 연구)

  • Na, Seung-kwon;Choi, Seok-Im;Pyeon, Yong-Kug
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • This paper is a study on how to develop service robots can easily complex software development services robot control system. User created contents based on the robot control system developed in this study is a robot drive control circuit, a sensor data processing, the status, the monitoring systems and modular system to configure the service robot operation screen from a user perspective and that can control the service robot operation As in the text-based features that can be operated to have freedom to the robot control service content. In addition, the user has the advantage that changes position by the development as well as user created contents desired by the user operating the robot control GUI (graphic user interface) also changes are possible. As a result, the service robot operator to offer a way to make the service robot can be conveniently presented in a user's point of view how to enable the development of the service robot.

Development and Evaluation of a System to Determine Position and Attitudes using In-Vehivle Seonsors (차량 내부 센서를 이용한 위치·자세 결정 시스템 구축 및 평가)

  • Kim, Ho Jun;Choi, Kyuong Ah;Lee, Im Pyeong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.57-67
    • /
    • 2013
  • GPS based car navigation systems show significant problems in such environment as a tunnel, a road surrounded by high buildings. In this study, we thus propose a method to determine positions and attitudes using only in-vehicle sensory data without a GPS. To check the feasibility of this method, we constructed a system to acquire in-vehicle sensory data and reference data simultaneously. We acquired test data using this system, estimated the trajectory based on the proposed method and evaluated the accuracy of both the sensory data and the trajectory. The speed and angular velocities provided by the in-vehicle sensors include 1.1 km/h and 0.8 deg/s RMS errors, respectively. The estimated trajectory using these data shows 20.8 m RMS errors for a 15 minute drive. In future, if we further combine additional sensors such as a camera and a GPS, we can achieve a high accurate navigation system at a low cost without an expensive high-grade external IMU.

Multi-legged Walking Robot Using Complex Linkage Structure (복합 링크기구를 이용한 다족 보행로봇)

  • Im, Sang-Hyun;Lee, Dong Hoon;Kang, Hyun Chang;Kim, Sang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.11
    • /
    • pp.74-79
    • /
    • 2021
  • Generally, multi-legged walking robots have excellent mobility in rough and uneven terrain, and they are deployed for the safety of rescuers in various disaster environments. However, as each leg is driven by a number of actuators, it leads to a complicated structure and high power consumption; therefore, it is difficult to put them into practical use. In this article, a new concept is proposed of a walking robot whose legs are driven by a complex linkage structure to overcome the deficiencies of conventional multi-legged walking robots. A double crank-rocker mechanism is proposed, making it possible for one DC motor to actuate the left and right movements of two neighboring thighs of the multi-legged walking robot. Each leg can also move up and down through an improved cam structure. Finally, each mechanism is connected by spur and bevel gears, so that only two DC motors can drive all legs of the walking robot. The feasibility of the designed complex linkage mechanism was verified using the UG NX program. It was confirmed through actual production that the proposed multi-legged walking robot performs the desired motion.