• Title/Summary/Keyword: IL-1β

Search Result 745, Processing Time 0.026 seconds

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 lipopolysaccharide 자극에 의한 염증성 및 산화적 스트레스에 미치는 5-aminolevulinic acid phosphate의 영향)

  • Ji, Seon Yeong;Kim, Min Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cha, Hee-Jae;Kim, Heui-Soo;Kim, Suhkmann;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.818-826
    • /
    • 2021
  • 5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.

Emodin Studies on Anti-inflammatory and Skin Barrier Improvement Activities (Emodin의 항염 및 피부장벽개선 활성 연구)

  • Kim, Se-Gie;Choi, Jae Gurn;Jang, Young-Ah
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1383-1392
    • /
    • 2021
  • It has been reported that emodin, a major pharmacologically active ingredient of herbal medicines such as Polygonum cuspidatum, Polygonum multiflorum, Rheum palmatum, and Aloe vera, is effective in antioxidant, antibacterial, anti-inflammatory, anticancer, and liver protection. In this study, to investigate the potential of emodin to be used as a skin disease and functional material, the activity related to the improvement of inflammation and skin barrier function was confirmed. To observe the anti-inflammatory effect on HaCaT cells, which are human keratinocytes, cytokine inhibition was confirmed by ELISA kit and protein expression by western blot. In HaCaT cells activated with TNF-α (10 ng/mL)/IFN-γ (10 ng/mL), emodin was treated with each concentration (5, 10, 20, 40) µM. As a result, It was confirmed that the production amount of TNF-α, IL-1β and IL-6 decreased as the concentration of emodin increased. In the experimental results on the expression levels of inflammation-related proteins iNOS and COX-2, it was confirmed that 48% of iNOS and 29% of COX-2 were inhibited compared to control at a concentration of 20 µM of emodin. As an indicator of skin barrier function improvement, the mRNA expression level of filaggrin, involucrin, and loricirn and the production amount of filaggrin, involucrin, and loricirn were confirmed. and excellent results were obtained with an emodin concentration-dependent increase. In particular, filaggrin, which was produced twice as much as the control at a concentration of 20 µM, is a protein involved in the formation of NMF, a natural moisturizing factor, and is known to play an important role in moisturizing the stratum corneum. In conclusion, it was confirmed that emodin can be used as a material for improving inflammation and improving skin barrier function, which is part of the potential for use as a skin disease and functional material. It is believed that if additional research is performed in the future, the scope of its application can be further expanded.

Anti-inflammatory Activity of Sorghum bicolor (L.) Moench var. Hwanggeumchal Grains in Lipopolysaccharide-stimulated RAW264.7 Murine Macrophage Cell Line (지질다당류-자극된 마우스 대식세포주 RAW264.7에서 황금찰수수 종자의 항염증 활성)

  • Jun, Do Youn;Woo, Hyun Joo;Ko, Jee Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.929-937
    • /
    • 2022
  • To investigate the anti-inflammatory activity of the grains of sorghum, three Sorghum bicolor (L.) Moench variants (Hwanggeumchal, Huinchal, and Chal) being cultivated in Korea, the 80% ethanol (EtOH) extracts of individual sorghum grains were compared for their inhibitory activity against nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 murine macrophage cell line. Among them, the EtOH extract of sorghum Hwanggeumchal grains could exert the highest inhibitory effect on the LPS-induced NO production. However, under these conditions, the viability of RAW264.7 cells was not affected. When the EtOH extract of sorghum Hwanggeumchal grains was sequentially fractionated with n-hexane, methylene chloride (MC), ethyl acetate (EtOAc), and n-butanol, the anti-NO production activity was predominantly detected in both MC and EtOAc fractions. In particular, treatment with the MC fraction reduced dose-dependently the expression levels of iNOS, COX-2 and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in LPS-stimulated RAW264.7 cells. Simultaneously, the MC fraction could prevent LPS-induced activating phosphorylation of p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). HPLC analysis of the MC fraction showed gentisic acid and naringenin as the major phenolic components. Both gentisic acid and naringenin commonly exhibited a potent inhibitory activity against LPS-induced NO production in RAW264.7 cells. Together, these results provide the evidence of the inhibitory activity of Hwanggeumchal grains on LPS-induce inflammatory responses in RAW264.7 murine macrophage cells and also suggest that sorghum grains possess beneficial health effects which can be applicable in development of the grain-based functional foods.

Improvement Effect of Sprout of Coix lacryma-jobi var. mayuen Stapf Water Extract on DSS-Induced Ulcerative Colitis in Mice. (DSS로 궤양성 대장염 유발된 동물모델에서 의이아(薏苡芽) 열수 추출물의 개선 효과)

  • Kim, Min Ju;Shin, Mi-Rae;Lee, Jin A;Park, Soon-Ae;Park, Hae-Jin;Lee, Jeong Hoon;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.35 no.6
    • /
    • pp.21-28
    • /
    • 2020
  • Objectives : The objective of this study was to investigate the improvement effect of Sprout of Coix lacryma-jobi var. mayuen Stapf water extract (SC) on the dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Methods : The antioxidant activity of SC was measured through total polyphenol and total flavonoid content in vitro. The experiment was conducted with seven-week-old male Balb/c mice. After 1 week adaptation, acute colitis was induced by oral administration of 5% DSS dissolved in drinking water, for 7 days. And normal mice received drinking water without DSS throughout the entire experimental period. For each experiment, the mice were divided into 4 groups and 24 colitis mice were arbitrarily allocated into 3 groups (n = 8/group); Normal group, Control group, SC 100 mg/kg treated group (SCL), SC 200 mg/kg treated group (SCH). Serum and colon tissues were collected after one weeks of drug administration. Results : ROS levels, ONOO- levels, AST, and ALT in serum were decreased in SC treated groups compared to the control group. Western blotting measurements of Nrf2, HO-1, SOD, catalase, GPx-1/2, IL-4, IL-10, and Bcl2 showed that the SC treated groups was increased compared to the Control group. Also, western blot measurements of NF-κBp65, p-IκBα, COX-2, iNOS, TNF-α, IL-1β, Bax, and Caspase-3 showed that the SC treated groups was reduced compared to the Control group. Conclusion : Taken together, these results suggest that SC treatment can attenuate the DSS-induced colitis though inhibiting NF-κB pathway and enhancing Nrf2 pathway. Therefore, SC was the potential to be used as a natural therapeutic drug.

Evaluation of Lateral Subgrade Reaction Coefficient Considering Empirical Equation and Horizontal Behavior Range of Large Diameter Drilled Shaft (경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가)

  • Yang, Woo-Yeol;Hwang, Tae-Hyun;Kim, Bum-Joo;Park, Seong-Bak;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • The lateral bearing characteristics of large diameter drilled shaft depend greatly on the stiffness of the pile, horizontal subgrade reaction of adjacent ground. In particular, the empirical evaluation results of the horizontal subgrade reaction coefficient which are widely used in pile design are very important factors in evaluating the lateral bearing capacity of drilled shaft because the difference in bearing capacity depends on the estimated result. Nevertheless, the evaluation of the horizontal subgrade reaction coefficient on the large diameter drilled shaft is insufficient. In addition, although the range of influence and the location of the maximum moment which is the weaken zone on the pile may be correlated and relationship of these are major consideration in determining the reinforced zone of drilled shaft, the previous studies have not been evaluated it. In this study, the field test and nonlinear analysis of large diameter drilled shaft were performed to evaluate the horizontal subgrade reaction coefficient and to investigate the relationship between the influence range 1/β of the pile and the location of the maximum moment zm. In the result, the lateral bearing capacity of drilled shaft showed a difference in results by about 190% according to the empirical equation on the horizontal subgrade reaction coefficient. And the relationship between the influence range of the pile and the location of the maximum moment was evaluated as a linear relationship depending on the soil density.

Anti-Inflammatory Effects of 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose in LPS-Stimulated Macrophages (LPS로 자극한 대식세포에서 1,2,3,4,6-Penta-O-Galloyl-β-D-Glucose의 염증 억제 효과)

  • Lee, Hee Won;Kang, Ye Rim;Bae, Min Seo;Kim, Yoon Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.4
    • /
    • pp.409-416
    • /
    • 2017
  • 1,2,3,4,6-Penta-O-galloyl-${\beta}$-D-glucose (PGG) is a gallotannin isolated from Galla Rhois. In a previous study, PGG was shown to suppress the allergic response by attenuating immunoglobulin E production both in vitro and in vivo. However, the effect of PGG on bacteria-induced inflammation at physiological concentration remains unclear. Therefore, the aim of this study was to investigate the effect of PGG on lipopolysaccharide (LPS)-stimulated macrophages. PGG inhibited release of nitric oxide (NO) and prostaglandin $E_2$ by alleviating protein expression of inducible NO synthase and cyclooxygenase-2 in LPS-treated RAW264.7 cells. Furthermore, PGG suppressed the release of interleukin-6 and tumor necrosis factor-${\alpha}$ induced by LPS. Further study indicated that PGG blocked translocation of the p65 subunit of nuclear factor-${\kappa}B$ from the cytosol into the nucleus, which is one of the underlying mechanisms of the anti-inflammatory action of PGG. Collectively, these data suggest that PGG might be useful for the treatment of inflammatory disease.

Ginsenoside Rd protects cerebral endothelial cells from oxygen-glucose deprivation/reoxygenation induced pyroptosis via inhibiting SLC5A1 mediated sodium influx

  • Li, Suping;Yu, Nengwei;Xu, Fei;Yu, Liang;Yu, Qian;Fu, Jing
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.700-709
    • /
    • 2022
  • Background: Ginsenoside Rd is a natural compound with promising neuroprotective effects. However, the underlying mechanisms are still not well-understood. In this study, we explored whether ginsenoside Rd exerts protective effects on cerebral endothelial cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment and its potential docking proteins related to the underlying regulations. Method: Commercially available primary human brain microvessel endothelial cells (HBMECs) were used for in vitro OGD/R studies. Cell viability, pyroptosis-associated protein expression and tight junction protein degradation were evaluated. Molecular docking proteins were predicted. Subsequent surface plasmon resonance (SPR) technology was utilized for validation. Flow cytometry was performed to quantify caspase-1 positive and PI positive (caspase-1+/PI+) pyroptotic cells. Results: Ginsenoside Rd treatment attenuated OGD/R-induced damage of blood-brain barrier (BBB) integrity in vitro. It suppressed NLRP3 inflammasome activation (increased expression of NLRP3, cleaved caspase-1, IL-1β and GSDMD-N terminal (NT)) and subsequent cellular pyroptosis (caspase-1+/PI + cells). Ginsenoside Rd interacted with SLC5A1 with a high affinity and reduced OGD/R-induced sodium influx and potassium efflux in HBMECs. Inhibiting SLC5A1 using phlorizin suppressed OGD/R-activated NLRP3 inflammasome and pyroptosis in HBMECs. Conclusion: Ginsenoside Rd protects HBMECs from OGD/R-induced injury partially via binding to SLC5A1, reducing OGD/R-induced sodium influx and potassium efflux, thereby alleviating NLRP3 inflammasome activation and pyroptosis.

MiR-30a-5p and miR-153-3p regulate LPS-induced neuroinflammatory response and neuronal apoptosis by targeting NeuroD1

  • Choi, Hye-Rim;Ha, Ji Sun;Kim, Eun-A;Cho, Sung-Woo;Yang, Seung-Ju
    • BMB Reports
    • /
    • v.55 no.9
    • /
    • pp.447-452
    • /
    • 2022
  • Neurogenic differentiation 1 (NeuroD1) is an essential transcription factor for neuronal differentiation, maturation, and survival, and is associated with inflammation in lipopolysaccharide (LPS)-induced glial cells; however, the concrete mechanisms are still ambiguous. Therefore, we investigated whether NeuroD1-targeting miRNAs affect inflammation and neuronal apoptosis, as well as the underlying mechanism. First, we confirmed that miR-30a-5p and miR-153-3p, which target NeuroD1, reduced NeuroD1 expression in microglia and astrocytes. In LPS-induced microglia, miR-30a-5p and miR-153-3p suppressed pro-inflammatory cytokines, reactive oxygen species, the phosphorylation of c-Jun N-terminal kinase, extracellular-signal-regulated kinase (ERK), and p38, and the expression of cyclooxygenase and inducible nitric oxide synthase (iNOS) via the NF-κB pathway. Moreover, miR-30a-5p and miR-153-3p inhibited the expression of NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasomes, NLRP3, cleaved caspase-1, and IL-1β, which are involved in the innate immune response. In LPS-induced astrocytes, miR-30a-5p and miR-153-3p reduced ERK phosphorylation and iNOS expression via the STAT-3 pathway. Notably, miR-30a-5p exerted greater anti-inflammatory effects than miR-153-3p. Together, these results indicate that miR-30a-5p and miR-153-3p inhibit MAPK/NF-κB pathway in microglia as well as ERK/STAT-3 pathway in astrocytes to reduce LPS-induced neuronal apoptosis. This study highlights the importance of NeuroD1 in microglia and astrocytes neuroinflammation and suggests that it can be regulated by miR-30a-5p and miR-153-3p.

Preparationan dCrystal Structure of [Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$]docosane-N-acetic acid) ([Ni($L^2$)($H_2O$)]Cl$\cdot$$H_2O$ ($L^2$: 3,14-dimethyl-2,6,13,17-tetraazatricyclo [14,4,$0^{1.18}$,$0^{7.12}$docosane-N-acetic acid) 착물의 합성 및 결정구조)

  • Park, Ki-Yonng;Park, Young-Soo;Kim, Jin-Gyu;Suh, Il-Hwan;Kim, Chang-Suk
    • Korean Journal of Crystallography
    • /
    • v.10 no.1
    • /
    • pp.33-38
    • /
    • 1999
  • The complex [Ni(L2)(H2O)]Cl·H2O (1) (L2=3,14-dimethyl-2,6,13,17-tetraazartricyclo [14,4,01.18,07.12]docosane-N-acetic acid) has been synthesized and characterized by X-ray crystallography. 1 crystallizes in the triclinic system, space group P, with a=11.274(1), b=13.851(1), c=17.159(6) , α=90.24(2), β=101.10(2), γ=92.11(1)o V=2682.5(11) 3, Z=4, R1=0.042 and wR2=0.111 for 9432 observed reflections with [I>2σ(I)]. The central nicke(II) ion is six-coordinated octahedral geometry with bonds to the four amine nitrogen atoms the carboxylic oxygen atom of the macrocyclic ligand and to the water molecule occupying a position trans to the pendant arm.

  • PDF

Effect of Sphingosine-1-Phosphate on In Vitro Maturation of Porcine Oocytes

  • Lee, Hyo-Sang;Wee, Kap-In;Park, Jung-Sun;Han, Ji-Soo;Kong, Il-Keun;Koo, Deog-Bon;Kang, Yong-Kook;Lee, Kyung-Kwang;Han, Yong-Mahn
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.70-70
    • /
    • 2002
  • Sphingosine-1-phosphate(S1P) is one of the sphingolipid metabolites which affect a variety of cellular processes including the proliferation, differentiation, growth, survival, migration and gene expression. The present study was undertaken to investigate the effect of SIP on nuclear maturation of porcine oocytes. In vitro maturation frequency of porcine oocytes were compared in three different media; group Ⅰ: NCSU23+0.1% PVA, group Ⅱ: NCSU23+10% PFF(porcine follicular fluid), and group Ⅲ: NCSU23+10% PFF+10 ng/㎖ EGF+2.5 mM β-mercaptoethanol. Each group containing 0.1 ㎎/㎖ cysteine was divided into 4 sub-groups of SIP concentration(0, 50, 500 and 5000nM). Porcine oocytes were incubated in each maturation medium supplemented with hormones(10 IU/㎖ PMSG and 10 IU/㎖ hCG) for 22h and then further cultured in the same medium without the hormones for 22h. After completion of in vitro maturation, the oocytes were fixed and stained to examine nuclear maturation by using a rapid stain method. In the group Ⅰ, the proportions of metaphase Ⅱ stage among oocytes cultured in 0nM(control), 50 nM, 500nM and 5000nM S1P were 45.5%, 66.7%, 56.6% and 48.7%, respectively. (omitted)

  • PDF