• 제목/요약/키워드: III-V Compound Semiconductor

검색결과 41건 처리시간 0.02초

CPV모듈의 2차 광학계 특성에 따른 성능분석 (Performance Analysis of CPV Modules for Optimizing Secondary Optical Elements)

  • 박점주;정병호;박주훈;이강연;김효진
    • 한국태양에너지학회 논문집
    • /
    • 제40권5호
    • /
    • pp.23-34
    • /
    • 2020
  • Concentrator photovoltaic (CPV) system consists of high-quality complex optical elements, mechanical devices, and electronics components and can have the advantages of high integration and high-efficiency energy sources. III-V compound semiconductor cells have proven performance based on high reliability in the aerospace field, but have characteristics that require absolute support of the balance of systems (BOS) such as solar position trackers, receivers with heat sinks, and housing instruments. To determine the optimum parameters of secondary optical elements (SOEs) design for CPV systems, we designed three types of CPV modules, classified as non-SOEs type, reflective mirror type, and CPC lens type. We measured the I-V and P-V characteristics of the prototype CPV modules with the angle of inclination varying from 0° to 12° and with a 500-magnification Fresnel lens. The experimental results assumed misalignment of the solar position tracker or module design of pinpoint accuracy. As a result, at the 0° tilt angle, the CPC lens produced lower power due to the quartz transmittance ratio compared to that by other SOEs. However, for tilt angles greater than 3°, the CPC lens type module achieved high efficiency and stability. This study is expected to help design high-performance CPV systems.

고주파 반응성 스퍼터링에 의해 제작된 InN 박막의 특성 (Characteristics of InN thin fabricated by RF reactive sputtering)

  • 김영호;최영복;정성훈;홍필영;문동찬;김선태
    • 한국전기전자재료학회논문지
    • /
    • 제11권7호
    • /
    • pp.527-534
    • /
    • 1998
  • Thin film deposition of InN, which is a less-studied III-nitride compound semiconductor because of the difficulty if crystal growth, was performed by rf reactive sputtering method using In target and $N_2$reactive gas. The structrual, electrical, and optical properties of the produced films were measured and disussed according to the sputtering parameters such as deposition pressure, rf power, and substrate temperature. From the result of deposition pressure, rf power, and substrate temperature, we could obtain optimal conditions of 5m Torr, 60W, $60^{\circ}C$ for preparing InN thin film with high crystallinity, low carrier concentration, and high Hall mobility. The carrier concentration, Hall mobility, and optical bandgap of the fabricated InN thin films at optimal condition were $6.242\times10^{18}cm^{-3}, 212.526cm^2/V\cdot$s, and 1.912eV, respectively.

  • PDF

HVPE 방법에 의한 금속 화합물 탄소체 기판 위의 GaN 성장 (The growth of GaN on the metallic compound graphite substrate by HVPE)

  • 김지영;이강석;박민아;신민정;이삼녕;양민;안형수;유영문;김석환;이효석;강희신;전헌수
    • 한국결정성장학회지
    • /
    • 제23권5호
    • /
    • pp.213-217
    • /
    • 2013
  • GaN는 대표적인 III-V족 질화물반도체로 주로 값싸고 다루기 쉬운 사파이어 기판 위에 성장된다. 하지만 사파이어 기판은 부도체이며, GaN과의 격자부정합을 일으키고 열전도도 또한 낮은 기판으로 알려져 있다. 본 논문에서는 방열기능과 열 전기전도도가 뛰어난 금속 화합물 탄소체 기판 위에 poly GaN epilayer를 HVPE법으로 성장시켜보았다. 비정질의 금속 화합물 탄소체 기판위에 성장되는 GaN epilayer의 성장메카니즘을 관찰하였다. GaN epilayer의 성장을 위해 HCl과 $NH_3$를 흘려주었다. 성장하기 위해 source zone과 growth zone의 온도는 각각 $850^{\circ}C$$1090^{\circ}C$로 설정했다. 성장이 끝난 샘플은 SEM, EDS, XRD측정을 통해 분석하였다.

Characterization and crystal growth of InP by VGF method using quartz ampoule

  • Park, E.S.;C.H. Jung;J.J. Myung;J.Y. Hong;Kim, M.K.
    • 한국결정성장학회지
    • /
    • 제9권6호
    • /
    • pp.542-546
    • /
    • 1999
  • InP single crystal, III-V binary compound semiconductor, was grown by VGF(vertical gradient freeze) method using quartz ampoule and its electrical optical properties were investigated. Phosphorous powders were put in the bottom of quartz ampoule and Indium metal charged in conical quartz crucible what was attached at the upper side position inside the quartz ampoule. It was vacuous under the pressure of $10^5$Torr and sealed up. Indium metal was melted at $1070^{\circ}C$ and InP composition was formed by diffusion of phosphorous sublimated at $450^{\circ}C$ into Indium melt. By cooling the InP composition melt ($2^{\circ}C$~$5^{\circ}C$/hr of cooling rate) in range of $1070^{\circ}C$~$900^{\circ}C$, InP crystal was grown. The grown InP single crystals were investigated by X-ray analysis and polarized optical microscopy. Electrical properties were measured by Van der Pauw method. At the cooling method. At the cooling rate of $2^{\circ}C$/hr, growth direction of ingot was [111] and the quality of ingot was better at the upper side of ingot than the lower side. It was found that the InP crystals were n-type semiconductor and the carrier concentration, electron mobility and relative resistivity were $10^{15}$~$10^{16}/\textrm{cm}^3$ , $2\times 10^3$~$3\times 10^4{\textrm}{cm}^2$/Vsec and$2\times 10^{-1}$~$2\times 10^{-3}$/ Wcm in the range of 150K~300K, respectively.

  • PDF

Crystal Growth of InP by VGF Method using Auqrtz Ampoule Characterization

  • Park, E.S.;C.H. Jung;J.J. Myung;J.Y. Hong;Kim, M.K.
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.419-431
    • /
    • 1999
  • InP, III-V binary compound semiconductor, single crystal was grown by VGF (vertical gradient freeze) method using quartz ampoule and its electrical optical properties were investigated. Phosphorous powders were put in the bottom of quartz ampoule and Indium metal changed in conical quartz crucible hat was attached at the upper side position inside the quartz ampoule. It was vacuous under the pressure of 10-5 Torr and sealed up. In metal in the quartz crucible was melted at 1070$^{\circ}C$ and phophorous sublimated at 450$^{\circ}C$, there after it was diffused in In melt and so InP composition was formed. By cooling the InP composition melt (2$^{\circ}C$∼5$^{\circ}C$/hr of cooling rate) in range of 1070$^{\circ}C$∼900$^{\circ}C$, InP crystal was grown. the grown InP single crystals were investigated by X-ray analysis and polarized optical microscopy. Electrical properties of them were measured by Van der Pauw method. At the cooling rate of 2$^{\circ}C$/hr, its direction was (111), quality of the ingot ws better upper side of the ingot than lower. It was found that the InP crystals were n-type semiconductor and the carrier concentration, electron mobility and relative resistivity were 1015∼1016/㎤, 2x103∼3x104$\textrm{cm}^2$/Vsec and 2x10-1∼2x10-3Ωcm in the range of 150K∼300K, respectively.

  • PDF

InGaP/GaAs 이중접합 기반의 고효율 플렉시블 태양전지 제조기술 연구 (Flexible InGaP/GaAs Double-Junction Solar Cells Transferred onto Thin Metal Film)

  • 문승필;김영조;김강호;김창주;정상현;신현범;박경호;박원규;안연식;강호관
    • Current Photovoltaic Research
    • /
    • 제4권3호
    • /
    • pp.108-113
    • /
    • 2016
  • III-V compound semiconductor based thin film solar cells promise relatively higher power conversion efficiencies and better device reliability. In general, the thin film III-V solar cells are fabricated by an epitaxial lift-off process, which requires an $Al_xGa_{1-x}As$ ($x{\geq}0.8$) sacrificial layer and an inverted solar cell structure. However, the device performance of the inversely grown solar cell could be degraded due to the different internal diffusion conditions. In this study, InGaP/GaAs double-junction solar cells are inversely grown by MOCVD on GaAs (100) substrates. The thickness of the GaAs base layer is reduced to minimize the thermal budget during the growth. A wide band gap p-AlGaAs/n-InGaP tunnel junction structure is employed to connect the two subcells with minimal electrical loss. The solar cell structures are transferred on to thin metal films formed by Au electroplating. An AlAs layer with a thickness of 20 nm is used as a sacrificial layer, which is removed by a HF:Acetone (1:1) solution during the epitaxial lift-off process. As a result, the flexible InGaP/GaAs solar cell was fabricated successfully with an efficiency of 27.79% under AM1.5G illumination. The efficiency was kept at almost the same value after bending tests of 1,000 cycles with a radius of curvature of 10 mm.

Sb 계면활성제에 의한 p-GaN 박막의 홀농도 향상 (Enhanced Hole Concentration of p-GaN by Sb Surfactant)

  • 김자연;박성주;문영부;권민기
    • 한국진공학회지
    • /
    • 제20권4호
    • /
    • pp.271-275
    • /
    • 2011
  • 본 논문은 고휘도 발광소자의 특성을 높이기 위한 p-GaN 박의 홀농도 향상을 연구하였다. 우리는 metal organic chemical vapor deposition 법을 이용하여 Antimony (Sb)가 p-GaN의 홀농도 향상에 도움을 주는 것을 확인하였다. Atomic force microscope 측정을 통해 Sb가 계면활성제처럼 역할을 함으로써 p-GaN의 2차원 성장이 촉진됨을 알 수 있었다. 또한 X-ray diffraction 결과 [002] 면과 [102] 면의 반폭치가 Sb 도핑과 함께 줄어드는 것을 통해 Edge과 Screw 전위의 감소와 photoluminescence 결과에서 450~500 nm 청색 파장 영역에서 발광의 세기가 현저히 줄어드는 것으로 보아 질소 공극이 감소되는 것이 홀농도 향상의 주된 원임임을 알 수 있었다. Trimethylantimony가 10 ${\mu}mol/min$일 때 홀농도는 최대가 되었고 그때 홀농도는 $5.4{\times}10^{17}cm^{-3}$이었다.

Investigation of InAs/InGaAs/InP Heterojunction Tunneling Field-Effect Transistors

  • Eun, Hye Rim;Woo, Sung Yun;Lee, Hwan Gi;Yoon, Young Jun;Seo, Jae Hwa;Lee, Jung-Hee;Kim, Jungjoon;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1654-1659
    • /
    • 2014
  • Tunneling field-effect transistors (TFETs) are very applicable to low standby-power application by their virtues of low off-current ($I_{off}$) and small subthreshold swing (S). However, low on-current ($I_{on}$) of silicon-based TFETs has been pointed out as a drawback. To improve $I_{on}$ of TFET, a gate-all-around (GAA) TFET based on III-V compound semiconductor with InAs/InGaAs/InP multiple-heterojunction structure is proposed and investigated. Its performances have been evaluated with the gallium (Ga) composition (x) for $In_{1-x}Ga_xAs$ in the channel region. According to the simulation results for $I_{on}$, $I_{off}$, S, and on/off current ratio ($I_{on}/I_{off}$), the device adopting $In_{0.53}Ga_{0.47}As$ channel showed the optimum direct-current (DC) performance, as a result of controlling the Ga fraction. By introducing an n-type InGaAs thin layer near the source end, improved DC characteristics and radio-frequency (RF) performances were obtained due to boosted band-to-band (BTB) tunneling efficiency.

NH3를 이용한 반응성 증착법에 의한 AlN 박막의 우선배향특성에 관한 연구 (A Study on the Preferred Orientation Characteristics of AlN Thin Films by Reactive Evaporation Method using NH3)

  • 오창섭;한창석
    • 대한금속재료학회지
    • /
    • 제50권1호
    • /
    • pp.78-85
    • /
    • 2012
  • Aluminum nitride(AlN) is a compound (III-V group) of hexagonal system with a crystal structure. Its Wurzite phase is a very wide band gap semiconductor material. It has not only a high thermal conductivity, a high electrical resistance, a high electrical insulating constant, a high breakdown voltage and an excellent mechanical strength but also stable thermal and chemical characteristics. This study is on the preferred orientation characteristics of AlN thin films by reactive evaporation using $NH_3$. We have manufactured an AlN thin film and then have checked the crystal structure and the preferred orientation by using an X-ray diffractometer and have also observed the microstructure with TEM and AlN chemical structure with FT-IR. We can manufacture an excellent AlN thin film by reactive evaporation using $NH_3$ under 873 K of substrate temperature. The AlN thin film growth is dependent on Al supplying and $NH_3$ has been found to be effective as a source of $N_2$. However, the nuclear structure of AlN did not occur randomly around the substrate a particle of the a-axis orientation in fast growth speed becomes an earlier crystal structure and is shown to have an a-axis preferred orientation. Therefore, reactive evaporation using $NH_3$ is not affected by provided $H_2$ amount and this can be an easy a-axis orientation method.

광전음극 소자용 GaAs/AlGaAs 구조의 LPE 성장 (Growth of GaAs/AlGaAs structure for photoelectric cathode)

  • 배숭근;전인준;김경화
    • 한국결정성장학회지
    • /
    • 제27권6호
    • /
    • pp.282-288
    • /
    • 2017
  • 본 논문에서는 광전 음극 이미지 센서로 사용될 수 있는 광소자용 재료로 III-V 족 화합물 반도체인 GaAs/AlGaAs 다층 구조를 LPE(Liquid Phase Epitaxy) 방법에 의해 성장하였다. n형 GaAs 기판 위에 수십 nm의 GaAs 완충층을 형성 한 후 Zn가 도핑된 p-AlGaAs 에칭 정지 층(etching stop layer)과 Zn가 도핑된 p-GaAs 층 그리고 Zn가 도핑된 p-AlGaAs 층을 성장하였다. 성장된 시료의 특성을 조사하기 위하여 주사전자현미경(SEM)과 이차이온질량분석기(SIMS) 그리고 홀(Hall) 측정 장치 등을 이용하여 GaAs/AlGaAs 다층 구조를 분석하였다. 그 결과 $1.25mm{\times}25mm$의 성장 기판에서 거울면(mirror surface)을 가지는 p-AlGaAs/p-GaAs/p-AlGaAs 다층 구조를 확인할 수 있었으며, Al 조성은 80 %로 측정 되었다. 또한 p-GaAs층의 캐리어 농도는 $8{\times}10^{18}/cm^2$ 범위까지 조절할 수 있음을 확인하였다. 이 결과로부터 LPE 방법에 의해 성장된 p-AlGaAs/p-GaAs/AlGaAs 다층 구조는 광전 음극 이미지 센서의 소자로서 이용될 수 있을 것으로 기대한다.