• Title/Summary/Keyword: III-V Compound Semiconductor

Search Result 41, Processing Time 0.026 seconds

Surface Preparation of III-V Semiconductors

  • Im, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.86.1-86.1
    • /
    • 2015
  • As the feature size of Si-based semiconductor shrinks to nanometer scale, we are facing to the problems such as short channel effect and leakage current. One of the solutions to cope with those issues is to bring III-V compound semiconductors to the semiconductor structures, because III-V compound semiconductors have much higher carrier mobility than Si. However, introduction of III-V semiconductors to the current Si-based manufacturing process requires great challenge in the development of process integration, since they exhibit totally different physical and chemical properties from Si. For example, epitaxial growth, surface preparation and wet etching of III-V semiconductors have to be optimized for production. In addition, oxidation mechanisms of III-V semiconductors should be elucidated and re-growth of native oxide should be controlled. In this study, surface preparation methods of various III-V compound semiconductors such as GaAs, InAs, and GaSb are introduced in terms of i) how their surfaces are modified after different chemical treatments, ii) how they will be re-oxidized after chemical treatments, and iii) is there any effect of surface orientation on the surface preparation and re-growth of oxide. Surface termination and behaviors on those semiconductors were observed by MIR-FTIR, XPS, ellipsometer, and contact angle measurements. In addition, photoresist stripping process on III-V semiconductor is also studied, because there is a chance that a conventional photoresist stripping process can attack III-V semiconductor surfaces. Based on the Hansen theory various organic solvents such as 1-methyl-2-pyrrolydone, dimethyl sulfoxide, benzyl alcohol, and propylene carbonate, were selected to remove photoresists with and without ion implantation. Although SPM and DIO3 caused etching and/or surface roughening of III-V semiconductor surface, organic solvents could remove I-line photoresist without attack of III-V semiconductor surface. The behavior of photoresist removal depends on the solvent temperature and ion implantation dose.

  • PDF

III-V 화합물 반도체 Interface Passivation Layer의 원자층 식각에 관한 연구

  • Gang, Seung-Hyeon;Min, Gyeong-Seok;Kim, Jong-Gyu;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.198-198
    • /
    • 2013
  • Metal-Oxide-Semiconductor (MOS)에서 사용되는 다양한 channel materials로 high electron mobility을 가지는 III-V compound semiconductor가 대두되고 있다 [1,2]. 하지만 이러한 III-V compound semiconductor는 Si에 비해 안정적인 native oxide가 부족하기 때문에 Si, Ge, Al2O3과 BeO 등과 같은 다양한 물질들의 interface passivation layers (IPLs)에 대한 연구가 많이 되고 있다. 이러한 IPLs 물질은 0.5~1.0 nm의 매우 얇은 physical thickness를 가지고 있고 또한 chemical inert하기 때문에 플라즈마 식각에 대한 연구가 되고 있지만 IPLs 식각 후 기판인 III-V compound semiconductor에 physical damage과 substrate recess를 줄이기 위해서 높은 선택비가 필요하다. 이러한 식각의 대안으로 원자층 식각이 연구되고 있으며 이러한 원자층 식각은 반응성 있는 BCl3의 adsorption과 low energy의 Ar bombardment로 desorption으로 self-limited한 one monolayer 식각을 가능하게 한다. 그러므로 본 연구에서는, III-V compound semiconductor 위에 IPLs의 adsorption과 desorption의 cyclic process를 이용한 원자층식각으로 다양한 물질인 SiO2, Al2O3 (self-limited one monolayer etch rate=about 1 ${\AA}$/cycle), BeO (self-limited one monolayer etch rate=about 0.75 ${\AA}$/cycle)를 얻었으며 그 결과 precise한 etch depth control로 minimal substrate recess 식각을 할 수 있었다.

  • PDF

Electrochemical Formation of III-V Compound Semiconductor InSb (III-V 화합물 반도체 InSb의 전기화학적 제조)

  • Lee, Jeong-Oh;Lee, Jong-Wook;Lee, Kwan-Hyi;Jeung, Won-Young;Lee, Jong-Yup
    • Journal of the Korean Electrochemical Society
    • /
    • v.8 no.3
    • /
    • pp.135-138
    • /
    • 2005
  • We investigated the electrochemical formation of a stoichiometric III-V compound semiconductor of InSb from an aqueous citric solution. Under an? optimized electrochemical condition, not like other research results, the electrodeposited InSb are satisfied exactly with the stoichiometry. Furthermore it retains the inherent characteristics of III-V compound semiconductor, InSb without heat treatment. EPMA, XPS and XRD were employed for confirmation of its composition/stoichiometry, chemical state, and crystallographic orientation, respectively.

The study of characteristic III-V compound semiconductor by He-Ne laser (III-V 화합물반도체에서의 He-Ne Laser를 활용한 광 특성 연구)

  • Yu, Jae-Yong;Choi, K.S.;Choi, Son Don
    • Laser Solutions
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2013
  • The optical properties of III-V compound semiconductor structure was investgated by photoreflectance (PR). The results show two signals at 1.42 and 1.73eV. These are attributed to the bandgap energy of GaAs, AlGaAs, respectively. Also, AlGaAs region showed weak signal. This signal is attributed to carbon or si defect.

  • PDF

Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor (III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석)

  • Ko, Jae-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

Ferromagnic Transitition Temperature of Diluted Magnetic III-V Based Semiconductor (III-V 화합물 자성 반도체의 강자성체 천이온도에 관한 연구)

  • Lee, Hwa-Yong;Kim, Song-Gang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05c
    • /
    • pp.143-147
    • /
    • 2001
  • Ferromagnetism in manganese compound semiconductors open prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds. Also it addresses a question about the origin of the magnetic interactions that lead to a Curie temperature(Tc) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally suggested for transition metals in 1950, can explain Tc of $Ga_{1-x}Mn_x$ As and that of its IT-VI counterpart $Zn_{1-x}Mn_x$ Te and is used to predict materials with Tc exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin. In this article, we present not only the experimental result but calculated Curie temperature by RKKY interaction. The problem in making III-V semiconductor has been the low solubility of magnetic elements, such as manganese, in the compound, since the magnetic effects are roughly proportional to the concentration of the magnetic ions. Low solubility of magnetic elements was overcome by low-temperature nonequilibrium MBE{molecular beam epitaxy) growth, and ferromagnetic (Ga,Mn)As was realized. Magnetotransport measurements revealed that the magnetic transition temperature can be as high as 110 K for a small manganese concentration.

  • PDF

III-V/Si Optical Communication Laser Diode Technology (광통신 III-V/Si 레이저 다이오드 기술 동향)

  • Kim, H.S.;Kim, D.J.;Kim, D.C.;Ko, Y.H.;Kim, K.J.;An, S.M.;Han, W.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.23-33
    • /
    • 2021
  • Two main technologies of III-V/Si laser diode for optical communication, direct epitaxial growth, and wafer bonding were studied. Until now, the wafer bonding has been vigorously studied and seems promising for the ideal III-V/Si laser. However, the wafer bonding process is still complicated and has a limit of mass production. The development of a concise and innovative integration method for silicon photonics is urgent. In the future, the demand for high-speed data processing and energy saving, as well as ultra-high density integration, will increase. Therefore, the study for the hetero-junction, which is that the III-V compound semiconductor is directly grown on Si semiconductor can overcome the current limitations and may be the goal for the ideal III-V/Si laser diode.

III-V Tandem, CuInGa(S,Se)2, and Cu2ZnSn(S,Se)4 Compound Semiconductor Thin Film Solar Cells (3-5족 적층형과 CuInGa(S,Se)2 및 Cu2ZnSn(S,Se)4 화합물반도체 박막태양전지)

  • Jeong, Yonkil;Park, Dong-Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.526-532
    • /
    • 2015
  • Solar cells with other alternative energies are being importantly recognized related with post-2020 climate change regime formation. In a point of view of materials, solar cells are classified to organic and inorganic solar cells which can provide a plant-scale electricity. In particular, recent studies about compound semiconductor solar cells, such as III-V tandem solar cells, chalcopyrite-series CIGSSe solar cells, and kesterite-series CZTSSe solar cells were rapidly accelerated. In this report, we introduce a research trend and technical issues for the compound semiconductor solar cells.