Browse > Article
http://dx.doi.org/10.14478/ace.2015.1089

III-V Tandem, CuInGa(S,Se)2, and Cu2ZnSn(S,Se)4 Compound Semiconductor Thin Film Solar Cells  

Jeong, Yonkil (Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST))
Park, Dong-Won (Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST))
Lee, Jae Kwang (Research Institute for Solar and Sustainable Energies (RISE), Gwangju Institute of Science and Technology (GIST))
Lee, Jaeyoung (School of Environmental Science and Engineering, GIST)
Publication Information
Applied Chemistry for Engineering / v.26, no.5, 2015 , pp. 526-532 More about this Journal
Abstract
Solar cells with other alternative energies are being importantly recognized related with post-2020 climate change regime formation. In a point of view of materials, solar cells are classified to organic and inorganic solar cells which can provide a plant-scale electricity. In particular, recent studies about compound semiconductor solar cells, such as III-V tandem solar cells, chalcopyrite-series CIGSSe solar cells, and kesterite-series CZTSSe solar cells were rapidly accelerated. In this report, we introduce a research trend and technical issues for the compound semiconductor solar cells.
Keywords
compound semiconductor solar cells; III-V tandem solar cells; concentrating photovoltaics; CIGSSe solar cells; CZTSSe solar cells;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B.-C. Chung, G. F. Virshup, S. Hikido, and N. R. Kaminar, 27.6% efficiency (1 sun, air mass 1.5) monolithic $Al_{0.37}Ga_{0.63}As/GaAs$ two junction cascade solar cell with prismatic cover glass, Appl. Phys. Lett., 55, 1741-1743 (1989).   DOI
2 O. Korech, J. M. Gordon, E. A. Katz, D. Feuermann, and N. Eisenberg, Dielectric microconcentrators for efficiency enhancement in concentrator solar cells, Opt. Lett., 32, 2789-2791 (2007).   DOI   ScienceOn
3 A. Boca, K. M. Edmondson, and R. R. King, Prismatic covers for boosting the efficiency of high-concentration PV systems, Proceedings of 34th IEEE Photovoltaic Specialists Conf., June 7-12, Philadelphia, USA (2009).
4 A. Cornfeld and T. Varghese, Solar cell with textured coverglass, US Patent 0017285 A1 (2011).
5 E. S. Fairbanks, Concentrating coverglass for photovoltaic cells, US Patent 5,959,787 (1999).
6 C.-H. Sun, P. Jiang, and B. Jiang, Broadband moth-eye antireflection coatings on silicon, Appl. Phys. Lett., 92, 061112 (2008).   DOI   ScienceOn
7 N. Yamada, O. N. Kim, T. Tokimitsu, Y. Nakai, and H. Masuda, Optimization of anti-reflection moth-eye structures foruse in crystalline silicon solar cells, Prog. Photovoltaics, 19, 134-140 (2010).
8 C. E. Valdivia, S. Chow, S. Fafard, O. Theriault, M. Yandt, J. F. Wheeldon, A. J. SpringThorpe, B. Rioux, D. McMeekin, D. Masson, B. Riel, V. Aimez, R. Ares, J. Cook, T. J. Hall, F. Shepherd, and K. Hinzer, Measurement of high efficiency 1 $cm^2$ AlGaInP/InGaAs/Ge solar cells with embedded InAs quantum dots at up to 1000 suns continuous concentration, Proceedings of 35th IEEE Photovoltaic Specialists Conf., June 20-25, Honolulu, USA (2010).
9 G. S. Kinsey, P. Herbert, K. E. Barbour, D. D. Krut, H. L. Cotal, and R. A. Sherif, Concentrator multijunction solar cell characteristics under variable intensity and temperature, Prog. Photovoltaics, 16, 503-508 (2008).   DOI   ScienceOn
10 www.nrel.gov/ncpv
11 W. Nishikawa, S. Home, and J. Melia, LCOE for concentrating photovoltaics (CPV), Proceedings of International Conference on Solar Concentrators for the Generation of Electricity, November 16-19, Palm Desert, USA (2008).
12 A. Chiril, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari, Potassium-induced surface modification of $Cu(In,Ga)Se_2$ thin films for high-efficiency solar cells, Nat. Mater., 12, 1107-1111 (2013).   DOI   ScienceOn
13 A. Chirila, S. Buecheler, F. Pianezzi, P. Bloesch, C. Gretener, A. R. Uhl, C. Fella, L. Kranz, J. Perrenoud, S. Seyrling, R. Verma, S. Nishiwaki, Y. E. Romanyuk, G. Bilger, and A. N. Tiwari, Highly efficient $Cu(In,Ga)Se_2$ solar cells grown on flexible polymer films, Nat. Mater., 10, 857-861 (2011).   DOI   ScienceOn
14 P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, New world record efficiency for $Cu(In,Ga)Se_2$ thin-film solar cells beyond 20%, Prog. Photovoltaics, 19, 894-897 (2011).   DOI   ScienceOn
15 A. A. Rockett, Current status and opportunities in chalcopyrite solar cells, Curr. Opin. Solid State Mat. Sci., 14, 143-148 (2010).   DOI   ScienceOn
16 I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To, and R. Noufi, 19.9%-efficient $ZnO/CdS/CuInGaSe_2$ solar cell with 81.2% fill factor, Prog. Photovoltaics, 16, 235-239 (2008).   DOI   ScienceOn
17 H. Katagiri, K. Jimbo, W. S. Maw, K. Oishi, M. Yamazaki, H. Araki, and A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films, 517, 2455-2460 (2009).   DOI   ScienceOn
18 K. Matunaga, T. Komaru, Y. Nakayama, T. Kume, and Y. Suzuki, Mass-production technology for CIGS modules, Sol. Energy Mater. Sol. Cells, 93, 1134-1138 (2009).   DOI   ScienceOn
19 K. Kushiya, Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules, Sol. Energy Mater. Sol. Cells, 93, 1037-1041 (2009).   DOI   ScienceOn
20 H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W. S. Maw, T. Fukano, T. Ito, and T. Motohiro, Enhanced Conversion Efficiencies of $Cu_2ZnSnS_4$-Based Thin Film Solar Cells by Using Preferential Etching Technique, Appl. Phys. Express, 1, 041201 (2008).   DOI
21 A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H.-W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vob, J. Schulze, and A. Kirbs, $Cu_2ZnSnS_4$ thin film solar cells from electroplated precursors: Novel low-cost perspective, Thin Solid Films, 517, 2511-2514 (2009).   DOI   ScienceOn
22 K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Thermally evaporated $Cu_2ZnSnS_4$ solar cells, Appl. Phys. Lett., 97, 143508 (2010).   DOI   ScienceOn
23 K. Ramasamy, M. A. Malik, and P. O'Brien, Routes to copper zinc tin sulfide $Cu_2ZnSnS_4$ a potential material for solar cells, Chem. Commun., 48, 5703-5714 (2012).   DOI   ScienceOn
24 I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, and R. Noufi, Co-evaporated $Cu_2ZnSnSe_4$ films and devices, Sol. Energy Mater. Sol. Cells, 101, 154-159 (2012).   DOI   ScienceOn
25 H. Deligianni, S. Ahmed, and L. T. Romankiw, The Next Frontier: Electrodeposition for Solar Cell Fabrication, Interface, 20, 47-53 (2011).
26 J. J. Scragg, Copper Zinc Tin Sulfide Thin Films for Photovoltaic-Sysnthesis and Characterization by Electrochemical Methods, Springer-Verlag Berlin Heidelberg, Germany (2007).
27 K. Ito, Copper Zinc Tin Sulfide-Based Thin Film Solar Cells, John Wiley & Sons, Chichester, UK (2015).
28 M. Jiang, Y. Li, R. Dhakal, P. Thapaliya, M. Mastro, J. D. Caldwell, F. Kub, and X. Yan, $Cu_2ZnSnS_4$ polycrystalline thin films with large densely packed grains prepared by sol-gel method, J. Photonics Energy, 1, 019501 (2011).   DOI
29 S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, and H. Deligianni, A High Efficiency Electrodeposited $Cu_2ZnSnS_4$ Solar Cell, Adv. Energy Mater., 2, 253-259 (2012).   DOI   ScienceOn
30 L. Guo, Y. Zhu, O. Gunawan, T. Gokmen, V. Deline, S. Ahmed, L. T. Romankiw, and H. Deligianni, Electrodeposited $Cu_2ZnSnSe_4$ thin film solar cell with 7% power conversion efficiency, Prog. Photovoltaics, 22, 58-68 (2014).   DOI   ScienceOn
31 X. Lu, Z. Zhuang, Q. Peng, and Y. Li, Wurtzite $Cu_2ZnSnS_4$ nanocrystals: A novel quaternary semiconductor, Chem. Commun., 47, 3141-3143 (2011).   DOI   ScienceOn
32 S. M. Camara, L. Wang, and X. Zhang, Easy hydrothermal preparation of $Cu_2ZnSnS_4$ (CZTS) nanoparticles for solar cell application, Nanotechnology, 24, 495401 (2013).   DOI   ScienceOn
33 K. Ankur, Synthesis And Characterization of Copper Zinc Tin Sulfide Nanoparticles and Thin Films, PhD Dissertation, University of Minnesota, Minnesota, USA (2012).
34 S. S. Hegedus and W. N. Shafarman, Thin-film solar cells: Device measurements and analysis, Prog. Photovoltaics, 12, 155-176 (2004).   DOI   ScienceOn
35 X. Lin, J. Kavalakkatt, K. Kornhuber, S. Levcenko, M. Ch. Lux-Steiner, and A. Ennaoui, Structural and optical properties of $Cu_2ZnSnS_4$ thin film absorbers from ZnS and $Cu_3SnS_4$ nanoparticle precursors, Thin Solid Films, 535, 10-13 (2013).   DOI   ScienceOn
36 W. Guter, J. S. Schone, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Olivia, A. W. Bett, and F. Dimroth, Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight, Appl. Phys, Lett., 94, 223504 (2009).   DOI   ScienceOn
37 Y. Jeong, C.-W. Kim, D.-W. Park, S. C. Jung, J. Lee, and H.-S. Shim, Field modulation in Na-incorporated $Cu(In,Ga)Se_2$ (CIGS) polycrystalline films influenced by alloy-hardening and pair-annihilation probabilities, Nanoscale Res. Lett., 6, 581 (2011).   DOI   ScienceOn
38 T. K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art $Cu_2ZnSn(S,Se)_4$ Solar Cells, Adv. Energy Mater., 3, 34-38 (2013).   DOI   ScienceOn
39 C. M. Fella, Y. E. Romanyuk, and A. N. Tiwari, Technological status of $Cu_2ZnSn(S,Se)_4$ thin film solar cells, Sol. Energy Mater. Sol. Cells, 119, 276-277 (2013).   DOI   ScienceOn
40 R. M. Swanson, The Pormise of Concentrators, Prog. Photovoltaics, 8, 93-111 (2000).   DOI
41 A. Luque and V. Andreev, Concentrator Photovoltaics, Springer, Berlin (2007).
42 G. Zubi, J. Bernal-Agustin, and G. V. Fracastoro, High concentration photovoltaic systems applying III-V cells, Renew. Sust. Energ. Rev., 13, 2645-2652 (2009).   DOI   ScienceOn
43 B. Mitchell, G. Peharz, G. Siefer, M. peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, Four-junction spectral beam-splitting photovoltaic receiver with high optical efficiency, Prog. Photovoltaics, 19, 61-72 (2011).   DOI   ScienceOn
44 J. Russell, G. Jones, and J. Hall, A New UVR/IRR Coverglass for Triple Junction Cells, Proceedings of 4th IEEE Photovoltaic Energy Conversion Conf., May 7-12, Waikoloa, USA (2006).