• Title/Summary/Keyword: IGF-I

Search Result 379, Processing Time 0.031 seconds

Effect of Bovine Colostral Whey Fraction containing Insulin-like Growth Factor on Cell Proliferation (젖소 초유 중의 Insulin-like Growth Factor-1 함유 분획이 세포 성장에 미치는 영향)

  • 황경아;양희진;하월규;이수원
    • Food Science of Animal Resources
    • /
    • v.24 no.2
    • /
    • pp.171-175
    • /
    • 2004
  • Insulin-like growth factor-I (IGF-I) rich fraction, which was obtained molecules ranged between 30 kDa and 1 kDa, was fractionated by ultrafiltration from bovine colostral whey with 30 kDa and 1 kDa membrane. IGF-I included in fractionated IGF-I rich fraction was confirmed by SDS-PAGE and western blotting and then the quantity of IGF-I was measured by ELISA. IGF-I concentration in IGF-I rich fraction was 10ng/mg protein. Effect of IGF-I rich fraction on in vitro proliferation of several cells was tested. IEC-6 cell proliferation rate was increased 60%. 53%, 30%, and 20% at l0ng, 1ng, 0.1ng and IGF-I of IGF-I, respectively, compared to control group which was not supplemented by IGF-I rich fraction. IGF-I rich fraction stimulated in vitro proliferation of IEC-6 cell in a dose dependent manner by increasing cell number. Detroit 551 cell proliferation was enhanced 56% and 26% at 10ng and 1ng level of IGF-I, respectively, compared to control group. EL-4 cell and L6 cell proliferation was increased 53% and 46% at 10ng of IGF-I, respectively, compared to control group.

Role of cAMP, EGF, IGF-I and Protein Phosphorylation in Mammary Development I. Effect of EGF, IGF-I and Photoreactive Cyclic AMP on DNA Synthesis of Mammary Epithelial Cell (유선발달에 있어서 cAMP, EGF, IGF-I 및 단백질 인산화 작용의 역할 I. EGF, IGF-I 및 Photoreactive Cyclic AMP가 유선상피세포의 DNA합성에 미치는 효과)

  • 여인서;박춘근;홍병주
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.1
    • /
    • pp.49-56
    • /
    • 1993
  • Mouse mammary epithelial cells(NMuMG) were plated onto 24 well phates(100,000 cells/well), in DMEM supplemented with 10% fetal calf serum. After serum starvation for 24 hours, EGF)0~100ng/ml) was added simultaneously with IGF-I(10ng/ml), 1$\mu$M photoreactive cAMP(4,5-dimethoxy-2-nitrobenzyl adenosine-3',5' cyclic monophosphate, DMNB) or IGF-I plus DMNB. After 2 hours, the cells were expposed to UV light(300nm, 3 second pulse0 in order to activate DMNB which induces a rapid transient increase in intracellular cAMP upon UV irradiation. DNA synthesis was estimated as incorporation of 3H-thymidine into DNA(1 hour pulse with 1$\mu$Ci/ml, 18~19 hours after UV exposure). Without IGF-I or DMNB, EGF(10 or 100ng/ml) increased DNA synthesis from 8,362 dpm/well in control to 16,345 or 18,684 dpm/well with EGF(pooled SE=1,239 dpm/well, P<0.05). IGF-I or IGF-I plus DMNB alone increased DNA synthesis from 8,362 dpm/well in control to 17,307 or 20,427 dpm/well, respectively(P<0.05). Addition of IGF-I, DMNB or IGF-I plus DMNB into 0~100ng/ml EGF did not significantly change the shape of dose response curve of EGF alone. In other experiment, EGF or IGF-I plus DMNB into 10ng/ml EGF group exhibited interaction effect in DNAsynthesis [EGF(10ng/ml)=18,497; IGF-I+EGF=22,837; DMNB+EGF=20,658 ; IGF-I+DMNB+EGF=29,658, pooled SE=1,055, P<0.05]. These results indicate that simultaneous activation of EGF, IGF-I and intracellular cAMP interact in DNA synthesis of mouse mammary epithelial cells.

  • PDF

Metabolic Regulation of Insulin-like Growth Factor-1 Expression (쥐의 insulin-like growth tractor리 유전자 발현의 대사조절기전에 관안 연구)

  • 안미라
    • KSBB Journal
    • /
    • v.17 no.3
    • /
    • pp.283-289
    • /
    • 2002
  • The present study was aimed at investigating the metabolic regulation of insulin-like growth factor-I(IGF-I) expression in fasting animals. The expression of IGF-I gene was determined by a solution hybridization/RNase protection assay using total RNA from control, 4d-fasting, and 2d-fasting-refed rats. The levels of IGF-I transcripts were reduced in 4d-fasting than in control by decreasing its transcriptional rate, which was measured through nuclear nun-on assay. DNase I footprinting, which was performed using nuclear extracts from fasting rat, demonstrated protein binding to a sequence that extended from +179 to +210 (termed region B). These data suggest that the expression of IGF-I is transcriptionally regulated through DNA-liver enriched protein binding in a sequence which is located downstream from major transcription initiation site of IGF-I gene.

Effects of high glucose concentration on IGF-I binding and glucose transporters in renal proximal tubule cells (신장 근위세뇨관세포에서 고포도당이 IGF-I 결합과 포도당운반계에 미치는 영향)

  • Han, Ho-jae;Park, Kwon-moo;Son, Chang-ho;Yoon, Yong-dal
    • Korean Journal of Veterinary Research
    • /
    • v.37 no.2
    • /
    • pp.301-310
    • /
    • 1997
  • Diabetes mellitus is associated with a wide range of pathophysiological in the kidney. This study was designed to examine the effects of high glucose concentration on IGF-I binding and glucose transporters in renal proximal tubule cells. The results were as follows : The binding of $^{125}I-IGF-I$ reached the peak at the 30 minutes and gradually decreased by the time dependent manner. The binding of $^{125}I-IGF-I$ was inhibited by the unlabelled IGF-I($10^{-14}{\sim}10^{-8}M$) in a concentration dependent manner. The relative affinity of IGF-I receptor for IGF-I, IGF-II and insulin exhibited typical type 1 binding(IGF-I > insulin > IGF-II). However IGF-II did not compete for the cultured cell membrane $^{125}I-IGF-I$ binding site at $10^{-14}{\sim}10^{-8}M$. Under optimal conditions, IGF-I binding to the membranes from 5mM and 20mM glucose treated cells was analyzed. It was found that 20mM glucose treated cells exhibited higher binding activity for IGF-I. In order to further substantiate this increase in IGF-I binding sites, we performed affinity-labelling studies. The cross-linked cell membrane subjected to SDS-PAGE; labelled material was detected by autoradiography. 20mM glucose treated cells exhibited higher levels. The initial rate of $methyl-{\alpha}-D-glucopyranoside({\alpha}-MG)$ uptake was significantly lower($74.41{\pm}6.71%$) in monolayers treated with 20mM glucose than those of 5mM glucose. However, 3-O-methyl-D-glucose(3-O-MG) uptake was not affected by glucose concentration in culture media. IGF-I significantly increased ${\alpha}-MG$ uptake in both 5mM and 20mM glucose treated cells. However, 3-O-MG uptake was not affected by IGF-I in both conditions. In conclusion, 20mM glucose increased binding sites of $^{125}I-IGF-I$, inhibited Na/glucose cotransporter activity. But 20mM glucose did not change facilitated glucose transporter.

  • PDF

Roles of the Insulin-like Growth Factor System in the Reproductive Function;Uterine Connection (Insulin-like Growth Factor Systems의 생식기능에서의 역할;자궁편)

  • Lee, Chul-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.23 no.3
    • /
    • pp.247-268
    • /
    • 1996
  • It has been known for a long time that gonadotropins and steroid hormones play a pivotal role in a series of reproductive biological phenomena including the maturation of ovarian follicles and oocytes, ovulation and implantation, maintenance of pregnancy and fetal growth & development, parturition and mammary development and lactation. Recent investigations, however, have elucidated that in addition to these classic hormones, multiple growth factors also are involved in these phenomena. Most growth factors in reproductive organs mediate the actions of gonadotropins and steroid hormones or synergize with them in an autocrine/paracrine manner. The insulin-like growth factor(IGF) system, which is one of the most actively investigated areas lately in the reproductive organs, has been found to have important roles in a wide gamut of reproductive phenomena. In the present communication, published literature pertaining to the intrauterine IGF system will be reviewed preceded by general information of the IGF system. The IGF family comprises of IGF-I & IGF-II ligands, two types of IGF receptors and six classes of IGF-binding proteins(IGFBPs) that are known to date. IGF-I and IGF-II peptides, which are structurally homologous to proinsulin, possess the insulin-like activity including the stimulatory effect of glucose and amino acid transport. Besides, IGFs as mitogens stimulate cell division, and also play a role in cellular differentiation and functions in a variety of cell lines. IGFs are expressed mainly in the liver and messenchymal cells, and act on almost all types of tissues in an autocrine/paracrine as well as endocrine mode. There are two types of IGF receptors. Type I IGF receptors, which are tyrosine kinase receptors having high-affinity for IGF-I and IGF-II, mediate almost all the IGF actions that are described above. Type II IGF receptors or IGF-II/mannose-6-phosphate receptors have two distinct binding sites; the IGF-II binding site exhibits a high affinity only for IGF-II. The principal role of the type II IGF receptor is to destroy IGF-II by targeting the ligand to the lysosome. IGFs in biological fluids are mostly bound to IGFBP. IGFBPs, in general, are IGF storage/carrier proteins or modulators of IGF actions; however, as for distinct roles for individual IGFBPs, only limited information is available. IGFBPs inhibit IGF actions under most in vitro situations, seemingly because affinities of IGFBPs for IGFs are greater than those of IGF receptors. How IGF is released from IGFBP to reach IGF receptors is not known; however, various IGFBP protease activities that are present in blood and interstitial fluids are believed to play an important role in the process of IGF release from the IGFBP. According to latest reports, there is evidence that under certain in vitro circumstances, IGFBP-1, -3, -5 have their own biological activities independent of the IGF. This may add another dimension of complexity of the already complicated IGF system. Messenger ribonucleic acids and proteins of the IGF family members are expressed in the uterine tissue and conceptus of the primates, rodents and farm animals to play important roles in growth and development of the uterus and fetus. Expression of the uterine IGF system is regulated by gonadal hormones and local regulatory substances with temporal and spatial specificities. Locally expressed IGFs and IGFBPs act on the uterine tissue in an autocrine/paracrine manner, or are secreted into the uterine lumen to participate in conceptus growth and development. Conceptus also expresses the IGF system beginning from the peri-implantation period. When an IGF family member is expressed in the conceptus, however, is determined by the presence or absence of maternally inherited mRNAs, genetic programming of the conceptus itself and an interaction with the maternal tissue. The site of IGF action also follows temporal (physiological status) and spatial specificities. These facts that expression of the IGF system is temporally and spatially regulated support indirectly a hypothesis that IGFs play a role in conceptus growth and development. Uterine and conceptus-derived IGFs stimulate cell division and differentiation, glucose and amino acid transport, general protein synthesis and the biosynthesis of mammotropic hormones including placental lactogen and prolactin, and also play a role in steroidogenesis. The suggested role for IGFs in conceptus growth and development has been proven by the result of IGF-I, IGF-II or IGF receptor gene disruption(targeting) of murine embryos by the homologous recombination technique. Mice carrying a null mutation for IGF-I and/or IGF-II or type I IGF receptor undergo delayed prenatal and postnatal growth and development with 30-60% normal weights at birth. Moreover, mice lacking the type I IGF receptor or IGF-I plus IGF-II die soon after birth. Intrauterine IGFBPs generally are believed to sequester IGF ligands within the uterus or to play a role of negative regulators of IGF actions by inhibiting IGF binding to cognate receptors. However, when it is taken into account that IGFBP-1 is expressed and secreted in primate uteri in amounts assessedly far exceeding those of local IGFs and that IGFBP-1 is one of the major secretory proteins of the primate decidua, the possibility that this IGFBP may have its own biological activity independent of IGF cannot be excluded. Evidently, elucidating the exact role of each IGFBP is an essential step into understanding the whole IGF system. As such, further research in this area is awaited with a lot of anticipation and attention.

  • PDF

Effect of IGF-I Rich Fraction from Bovine Colostral Whey on Murine Immunity

  • Hwang, Kyung-A;Ha, Woel-Kyu;Yang, Hee-Jin;Lee, Soo-Won
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.2
    • /
    • pp.297-304
    • /
    • 2006
  • Insulin-like growth factor-I (IGF-I) rich fraction, collected components between 1 kDa and 30 kDa, was fractionated from bovine colostral whey using an ultrafiltration membrane. IGF-I was confirmed in the collected IGF-I rich fraction by both SDS-PAGE and Western blotting. The concentration of IGF-I in the IGF-I rich fraction was 10 ng/mg protein. One hundred microliters of the reconstituted IGF-I rich fraction was intraperitoneally injected into ICR male mice for 2 weeks at 24 h intervals. The functions of peritoneal macrophages, including phagocytosis, interleukin (IL)-6 and tumor necrosis factor (TNF)-${\alpha}$ production, and nitric oxide and hydrogen peroxide production, were enhanced significantly by the administration of the IGF-I rich fraction in a dose-dependent manner (p<0.01). The proliferation of Concanavalin (Con) A-stimulated and Lipopolysaccharide (LPS)-stimulated splenocytes was also determined to have been enhanced significantly by the administration of the IGF-I rich fraction in a dose-dependent manner (p<0.01). Our results indicate that the administration of IGF-I rich fraction obtained from bovine colostral whey enhances both innate and acquired immunity for ICR male mice.

Effects of ethanol-induced p42/44 MAPkinase activity on IGF system in primary cultured rat hepatocytes (흰쥐의 배양된 간세포에서 ethanol에 의해 유도된 p42/44 MAPkinase가 IGF system에 미치는 효과)

  • Lee, Sun-Mi;Kim, Jong-Hoon;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.4
    • /
    • pp.315-322
    • /
    • 2006
  • Ethanol abuse is associated with liver injury, neurotoxicity, modulation of immune responses, and increased risk for cancer, whereas moderate ethanol consumption exerts protective effects against liver injury. However, the underlying signal transduction mechanisms of insulin-like growth factors (IGFs) which play an important regulatory role in various metabolism mechanisms are not well understood. We investigated the effects of ethanol-induced p42/44 activity on IGF-I secretion, IGF-I receptor and IGFBP-1 secretion using radioimmunoassay and western blotting in primary cultured rat hepatocytes. The p42/44 activity, IGF-I secretion and IGF-I receptor activity significantly accelerated compared to control at 10 and 30 min after 200 mM ethanol treatment, but then it became suppressed at 180 min. In contrast, IGFBP-1 secretion was inhibited compared to control at 30 min after 200 mM ethanol treatment, but increased at 180 min. The IGF-I secretion, IGF-I receptor and p42/44 activity at 30 min after 200 mM ethanol treatment accelerated with increasing ethanol concentration but IGFBP-1 secretion inhibited (p<0.05). The increased IGF-I secretion, inhibited IGFBP-1 secretion and IGF-IR activity by ethanol-induced temporal p42/44 activity at 30 min after ethanol treatment was blocked by treatment with PD98059. Alcohol dehydrogenase (ADH) inhibitor, 4-methylpyramazole blocked the changes of IGF-I secretion, IGFBP-1 secretion, and IGF-IR activity by ethanol-induced p42/44 activity at 30 and 180 min. Taken together, these results suggest that ethanol is involved in the modulation of IGF-I and IGFBP-1 secretion and IGF-IR activity by p42/44 activity in primary cultured rat hepatocytes. In addition, changing of p42/44 activity by ethanol was caused with ADH.

Response of Muscle Protein Synthesis to the Infusion of Insulin-like Growth Factor-I and Fasting in Young Chickens

  • Kita, K.;Shibata, T.;Aman Yaman, M.;Nagao, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.12
    • /
    • pp.1760-1764
    • /
    • 2002
  • In order to elucidate the physiological function of circulating IGF-I on muscle protein synthesis in the chicken under malnutritional conditions, we administrated recombinant chicken IGF-I using a osmotic mini pump to fasted young chickens and measured the rate of muscle protein synthesis and plasma metabolite. The pumps delivered IGF-I at the rate of $22{\mu}g/d\{300{\mu}g{\cdot}(kg\;body\;weight{\cdot}d)^{-1}\}$. Fractional rate of protein synthesis in the muscle was measured using a large dose injection of L-[$2,6-^3H$]phenylalanine. Constant infusion of chicken IGF-I did not affect plasma glucose level. Significant interaction between dietary treatment and IGF-I infusion was observed in plasma NEFA and total cholesterol concentrations. When chicks were fasted, IGF-I infusion decreased plasma NEFA and total cholesterol concentrations. On the other hand, IGF-I administration did not affect plasma levels of both metabolites. Fasting reduced plasma triglyceride concentration significantly. IGF-I infusion also decreased the level of plasma triglyceride. Plasma IGF-I concentration of young chickens was halved by fasting for 1 d. IGF-I infusion using an osmotic minipump for 1 d increased plasma IGF-I concentration in fasted chicks to the level of fed chicks. Fasting decreased body weight and the loss of body weight was significantly ameliorated by IGF-I infusion. There was a significant interaction between dietary treatment and IGF-I infusion in the fractional rate of breast muscle protein synthesis. There was no effect of IGF-I infusion on muscle protein synthesis in fed chicks. Muscle protein synthesis reduced by fasting was ameliorated by IGF-I infusion, but did not reach to the level of fed control. Muscle weight of fasted chicks infused with IGF-I was similar to fasted birds without IGF-I infusion, which suggests that muscle protein degradation would be increased by IGF-I infusion as well as protein synthesis in fasted chicks.

Recovery of IGF-I Using Liquid Emulsion Membranes (액막법을 이용한 IGF-I 회수)

  • 최광수;문용일
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.1
    • /
    • pp.89-94
    • /
    • 1998
  • A study was made to investigate the effects of concerning factors with IGF-I recovery on the final IGF-I concentration in the effluent and to establish recovery conditions of IGF-I using liquid emulsion membranes(LEM). D2EHPA was best carrier among Amberlite LA2, Aliquit 336 and D2EHPA for recovery rate of IGF-I. Recovery rate of IGF-I by D2EHPA volume in the oil phase was increased as increasing D2EHPA volume, and optimal volume of D2EHPA was 5% in this experiment. The recovery rate of IGF-I by D2EHPA was increased by the decreasing from pH 7 to pH 4 of external phase. Therefore, optimal pH value was 4.0. Optimal concentrations of sulfuric acid in internal phase, paraffin oil in oil phase and Span 80 for recovery rate of IGF-I were 0.1M, 2.0% and 5%, respectively, and optimal W/O rate was 2. These results suggested that optimal conditions for recovery of IGF-I were D2EHPA(5%) as carrier, pH 4.0, 0.1M sulfuric acid, 2% paraffin oil, 2.0 W/O rate and 5.0% Span 80.

  • PDF

Effects of Selection by Serum IGF-I Concentration in Korean Native Ogol Chicken

  • Kim, D. H.;Kim, M. H.;W. J. Kang;D. S. Seo;Y. Ko
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.20-20
    • /
    • 2003
  • Phenotypic characteristics and genetic markers in livestock have been utilized for improvement of the economic traits including egg productivity. Korean Native Ogol Chicken (KNOC) has low egg productivity compared to White Leghorn. Therefore, in this study, serum IGF-I concentration and number of egg production were used as selection markers to improve egg productivity. KNOCs were divided into three groups showing high IGF-I concentration (IGF-I high), high egg production (EP high), and IGF-I/EP high groups. Blood was collected every 10 weeks, and serum concentrations of IGF-I, estradiol (E2), and progesterone (P4) were measured by radioimmunoassay. In comparison of three groups in each generation, the highest increment of egg production was detected in the IGF-I/EP high group from 20 weeks till 40 weeks, and the IGF-I high group also showed the significant increment of egg production after 50 weeks. Interestingly, there were the increase of egg production and decrease of periods in sexual maturity in the second and third generation selected by serum IGF-I concentration, while egg weight and body weight decreased during experimental period. In conclusion, the present study suggest the possibility of IGF-I as a selection marker to improve the egg productivity of KNOC.

  • PDF