• 제목/요약/키워드: IGARCH모형

검색결과 11건 처리시간 0.018초

국내금융자산의 시장위험 추정에 있어서 ARCH류 모형의 유용성 평가

  • 유일성
    • 재무관리논총
    • /
    • 제11권1호
    • /
    • pp.157-176
    • /
    • 2005
  • 본 연구는 KOSPI자산 포트폴리오에 대한 VaR를 다양한 ARCH류 모형을 사용하여 추정하고 이들의 예측능력을 평가하였다. 활용된 모형은 우선 기본적인 GARCH(1,1)모형과 레버리지 효과를 감안한 TGARCH모형, 다양한 ARCH모형을 포괄할 수 있는 PGARCH모형, 변동성의 영속성을 고려한 IGARCH모형이 포함되었다. 모형 상호간의 성과비교에 추가하여 ARCH류 모형에서 수익률예측오차의 분포에 따라서 VaR의 예측성과가 얼마나 차이가 발생하는가를 확인하기 위하여 정규분포와 Student-t분포의 성과를 비교하였다. 마지막으로 VaR 추정시에 조건부평균을 무시하는 관례가 어느정도 타당성이 있는지를 확인하기 위하여 1시차 자기회귀과정에 입각한 조건부 평균을 감안한 결과를 검토하였다. ARCH류 모형에서 모형 설명력은 보다 정교한 모형인 TGARCH모형이나 PGARCH모형이 우월하게 나타났지만, VaR의 예측능력 우월성으로 이어지지는 않았다. Student-t분포를 가정한 경우 VaR모형 사후검증성과는 정규분포를 가정한 경우보다 모든 신뢰수준에서 개선되었으며, 조건부평균의 제거는 Student-t분포 가정하에서는 적합하지 않은 것으로 나타났다. ARCH류 모형에서 가장 단순한 형태인 IGARCH모형의 예측성과가 다른 모형들에 비하여 뒤떨어지지 않으며, 더욱 제약된 형태인 RiskMetrics의 EWMA모형이 사후검증에서 우수한 성과를 보여 단순한 모형의 유용성을 확인시켜주고 있다.

  • PDF

IGARCH 모형과 Stochastic Volatility 모형의 비교

  • Hwang, S.Y.;Park, J.A.
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.151-152
    • /
    • 2005
  • IGARCH and Stochastic Volatility Model(SVM, for short) have frequently provided useful approximations to the real aspects of financial time series. This article is concerned with modeling various Korean financial time series using both IGARCH and Stochastic Volatility Models. Daily data sets with sample period ranging from 2000 and 2004 including KOSPI, KOSDAQ and won-dollar exchange rate are comparatively analyzed using IGARCH and SVM.

  • PDF

일별 환율데이터에 대한 시계열 모형 적합 및 비교분석 (Time Series Models for Daily Exchange Rate Data)

  • 김보미;김재희
    • 응용통계연구
    • /
    • 제26권1호
    • /
    • pp.1-14
    • /
    • 2013
  • 미국 달러에 대한 한국원화의 17년간 일별 원/달러 환율 시계열 데이터에 대하여 정상 시계열 ARIMA 모형과 변동성을 포함한 시계열 모형인 ARIMA+IGARCH 모형을 적합하여 비교하고 예측을 실시하였다. 또한 환율 데이터에 구조변화가 있어 보이므로 선형구조를 포함한 구조 변화 모형과 자기상관 구조를 포함한 구조 변화 모형을 이용하여 변화점을 추정하고자 한다.

이분산성 시계열 모형(GARCH, IGARCH, EGARCH)들의 성능 비교 (Comparison of a Class of Nonlinear Time Series models (GARCH, IGARCH, EGARCH))

  • 김삼용;이용흔
    • 응용통계연구
    • /
    • 제19권1호
    • /
    • pp.33-41
    • /
    • 2006
  • 최근 들어 시계열 자료 분석에서 관측된 각 시점에서의 관측치의 분산을 서로 다른 분산(조건부 이분산성)을 따른다고 가정하고, 이를 분석하는 모형(ARCH, GARCH, EGARCH, IGARCH 등)들이 옵션 가격 분석이나 환율 변화 등 경제적 시계열 자료의 예측 모형을 위하여 활발히 연구되고 있다. 본 논문에서는 한국의 KOSPI 데이터 (1999년 1월 4일 $\sim$ 2003년 12월 30일, 총 1227일)를 바탕으로 조건부 우도함수 모수 추정 방법을 이용한 GARCH(1,1), IGARCH(1,1), EGARCH(1,1) 모형에 KOSPI 자료를 적합 시켜 각 모형들의 성능을 비교하여 보았다.

원/달러환율과 원/엔 환율 관계에 관한 시계열 모형연구 (Time series models based on relationship between won/dollar and won/yen exchange rate)

  • 이훈자
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1547-1555
    • /
    • 2016
  • 환율의 변동은 국가의 경제뿐만 아니라 사회, 산업, 문화 등의 전 분야에 영향을 준다. 본 연구에서는 원/엔 환율을 원/달러 환율로 설명하는 시계열모형을 연구하고자 한다. 각 환율자료들은 1999년 1월1일부터 2015년 12월 31일까지의 17년간의 일별자료를 2008년 9월13일 시작된 세계금융위기를 기점으로 두 기간으로 나누어 분석하였다. 첫 기간은 1999년 1월 1일부터 2008년 9월 12일까지의 3543개의 일별자료를 분석했고 두 번째 기간에서는 2008년 10월 1일부터 2015년 12월31일까지의 2650개의 일별자료를 분석했다. 환율의 변동성 설명을 위해 AR+IGARCH 모형으로 분석하였다. 첫 번째 기간과 두 번째 기간 모두 AR+IGARCH (1,1) 모형으로 추정된 원/엔 환율이 실제값 보다 약간씩 과소추정이 되었다.

한국 KOSPI시장의 GARCH-VaR 측정모형 및 분포간 성과평가에 관한 연구:롱 및 숏 포지션 전략을 중심으로 (Comparing Among GARCH-VaR Models and Distributions from Korean Stock Market (KOSPI) :Focusing on Long and Short Positions)

  • 손판도
    • 재무관리연구
    • /
    • 제25권4호
    • /
    • pp.79-116
    • /
    • 2008
  • 본 논문은 1980년 1월부터 2004년 9월까지 한국 거래소 시장수익률을 이용하여 RiskMetrics, GARCH, IGARCH, GJR, APARCH 등의 모형에 정규분포, 스튜던트 t분포, 왜도 스튜던트 t분포 등을 이용하여 어느 분포를 가진 모형이 보다 더 정확한 VaR을 추정할 수 있는지를 실증검증 하였다. 실증결과 표본 내 검증 시 모든 신뢰수준($90%{\sim}99.9%$)에서 롱 포지션 전략에서는 ${\lambda}=0.87$를 가진 IGARCH 모형 및 왜도 스튜던트 t분포가 가장 우월하며, 숏 포지션 전략에서는 GARCH 및 GJR 모형이 그리고 왜도 스튜던트 t분포가 가장 우월하였고, 99% 이상의 신뢰수준에서는 또한 ${\lambda}=0.87$를 가진 IGARCH 모형이 롱 및 숏 포지션 양 전략에서 우월하였다. 또한 분포의 경우 롱 포지션에서 왜도 스튜던트 t분포, 숏 포지션에서 스튜던트 t분포가 가장 우월하였다. 표본 외 검증에서도 동일한 결과를 제시하고 있다.

  • PDF

호주 선물시장의 장기기억 변동성 예측 (Forecasting Long-Memory Volatility of the Australian Futures Market)

  • 강상훈;윤성민
    • 국제지역연구
    • /
    • 제14권2호
    • /
    • pp.25-40
    • /
    • 2010
  • 변동성을 정확하게 예측하는 것은 금융시장의 변동성 연구에 있어 특히 포트폴리오선택, 옵션가격결정, 위험관리와 관련하여 매우 흥미로운 연구주제이다. 왜냐하면 변동성은 시장의 위험을 의미하기 때문이다. 이 논문은 세 가지 변동성 모형(GARCH, IGARCH, FIGARCH)을 이용하여 호주 주가지수선물시장의 일일후 변동성을 예측하고 각 모형의 예측력을 비교 분석하였다.특히 호주 주가지수선물 변동성에 존재하는 장기기억 특성에 초점을 맞추고 실증분석하였다. 실증분석 결과 FIGARCH 모형이 GARCH 모형이나 IGARCH 모형보다 호주 주가지수선물시장의 장기기억 특성을 더 잘 포착한다는 것을 발견하였다. 또 세 모형 중 FIGARCH 모형을 이용할 경우 일일후 변동성 예측의 성과가 가장 우수하다는 것도 발견하였다. 이는 호주 주가지수선물 변동성에 장기기억이 존재하는 것을 의미하고, 변동성의 특징을 명시적으로 고려하는 FIGARCH 모형이 장기기억을 고려하지 않는 다른 모형들보다 예측성과 측면에서 더 우수하다는 것을 의미한다. 따라서 호주 주가지수선물시장의 장기기억 변동성을 예측하는 데는 FIGARCH 모형이 가장 유용한 것으로 나타났다.

원유시장 분석을 위한 VaR 모형 (Value-at-Risk Models in Crude Oil Markets)

  • 강상훈;윤성민
    • 자원ㆍ환경경제연구
    • /
    • 제16권4호
    • /
    • pp.947-978
    • /
    • 2007
  • 본 연구에서는 원유시장의 변동성 분석에 적용될 수 있는 VaR(Value-at-Risk) 접근법을 고찰한다. 그리고 다양한 VaR 모형들(RiskMetrics, GARCH, IGARCH와 FIGARCH 모형)의 성과를 정규분포와 치우친 Student-t 분포 가정 하에서 평가한다. Brent 및 Dubai 시장의 일별가격 자료를 이용한 실증분석 결과에 따르면, FIGARCH 모형이 GARCH 모형이나 IGARCH 모형보다 원유시장의 변동성에 내재되어 있는 장기기억 특성을 잘 반영한다는 점에서 더 우월한 것으로 나타났다. 이러한 사실은 원유시장 수익률의 변동성에는 장기기억이 존재한다는 것을 의미한다. 그리고 VaR 분석 결과, 치우친 Student-t 분포 가정 하에서 추정되는 FIGARCH 모형이 롱 포지션과 숏 포지션 모두에서 정규분포 가정 하에서 추정되는 다른 변동성 모형들보다 원유시장에서의 투자 위험을 더 정확하게 예측하는 것으로 나타났다. 이러한 사실은 치우친 Student-t 분포 가정이 원유시장 수익률 분포에 내재되어 있는 비정상적 왜도와 첨도를 모형화하는데 더 적합하다는 것을 의미한다. 이와 같은 발견은 원유시장 구매자 및 판매자들이 원유가격의 움직임을 올바르게 측정하고 VaR을 정확하게 추정하는데 도움을 줄 것이다.

  • PDF

국내 금융시계열의 누적(INTEGRATED)이분산성에 대한 사례분석 (Evidence of Integrated Heteroscedastic Processes for Korean Financial Time Series)

  • 박진아;백지선;황선영
    • 응용통계연구
    • /
    • 제20권1호
    • /
    • pp.53-60
    • /
    • 2007
  • 시계열 자료 분석에서 ARCH류와 같은 조건부 이분산성 모형을 가정하고 분석하는 모형들이 많이 쓰이고 있다. 실제 우리나라 금융 시계열 자료들을 분석해 보면 비정상성을 나타내는 경우가 드물지 않게 나타난다. 즉, 단위근 형태의 비정상 패턴(integrated phenomenon)에 가까운 경우가 자주 나타난다. 본 논문에서는 다양한 국내 금융시계열 15개에(주가지수, 선물지수, 환율, 이자율 등) GARCH(1,1) 모형을 적합시켜 분산의 지속성을 확인하고, 각 데이터에 첨도(Kurtosis)와 적합된 IGARCH(1,1) 모형을 제시하고자 한다.

지속-변동성을 가진 비대칭 TGARCH 모형을 이용한 국내금융시계열 분석 (I-TGARCH Models and Persistent Volatilities with Applications to Time Series in Korea)

  • 홍선영;최성미;박진아;백지선;황선영
    • Communications for Statistical Applications and Methods
    • /
    • 제16권4호
    • /
    • pp.605-614
    • /
    • 2009
  • 본 논문에서는 금융시계열자료를 분석하는데 있어서 비대칭 변동성과 지속성효과를 가지는 시계열 자료에 적합한 모형인 I-TGARCH를 제시하였다. 국내 금융시계열 자료를 바탕으로 I-TGARCH의 적합성을 검증하기 위해 기존연구에서 많이 쓰이고 있는 TGARCH, IGARCH, EGARCH 모형과 함께 분석하여 비교하였다. 그 결과, I-TGARCH모형이 경제 위기의 영향으로 변동성이 커진 현재의 주가 분석에 적합하다는 사실을 알 수 있었다. 특히, 비대칭적 변동성의 특징을 관찰하기 위해 News impact curve를 이용해서 호재와 악재에 다르게 반응하는 주가변동에 대해서 알아본 결과, 대부분의 주가변동이 비대칭적인 경향을 보이고 있다는 사실을 관찰했다. 또한, 실제 일별수익율 데이터를 I-TGARCH 모형에 적합시키고 모형이 얼마나 효율적인지를 검정하였다. I-TGARCH의 적합성을 검증하기 위해 VaR의 사후검정을 이용하였다. 그 결과 대부분의 금융시계열이 I-TGARCH가 다른 비교모형 보다 우수하거나 비슷한 것으로 검증되었다. 이는 변동성의 비대칭성을 고려한 TGARCH에서 지속-변동성 효과(persistent effect) 또한 존재할 수 있다는 사실을 금융시계열자료를 통해 알 수 있었다.