DOI QR코드

DOI QR Code

Time Series Models for Daily Exchange Rate Data

일별 환율데이터에 대한 시계열 모형 적합 및 비교분석

  • Kim, Bomi (Department of Statistics, Duksung Women's University) ;
  • Kim, Jaehee (Department of Statistics, Duksung Women's University)
  • 김보미 (덕성여자대학교 정보통계학과) ;
  • 김재희 (덕성여자대학교 정보통계학과)
  • Received : 2012.07.02
  • Accepted : 2012.11.23
  • Published : 2013.02.28

Abstract

ARIMA and ARIMA+IGARCH models are fitted and compared for daily Korean won/US dollar exchange rate data over 17 years. A linear structural change model and an autoregressive structural change model are fitted for multiple change-point estimation since there seems to be structural change with this data.

미국 달러에 대한 한국원화의 17년간 일별 원/달러 환율 시계열 데이터에 대하여 정상 시계열 ARIMA 모형과 변동성을 포함한 시계열 모형인 ARIMA+IGARCH 모형을 적합하여 비교하고 예측을 실시하였다. 또한 환율 데이터에 구조변화가 있어 보이므로 선형구조를 포함한 구조 변화 모형과 자기상관 구조를 포함한 구조 변화 모형을 이용하여 변화점을 추정하고자 한다.

Keywords

References

  1. Bai, J. and Perron, P. (1998). Estimating and testing linear models with multiple structural changes, Econo- metrica ,66, 47-78. https://doi.org/10.2307/2998540
  2. Bai, J. and Perron, P. (2003). Computation and analysis of multiple structural change models, Journal of Applied Econometrics, 18, 1-22. https://doi.org/10.1002/jae.659
  3. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  4. Box, G. E. and Jenkins, G. M. (1976). Time Series Analysis: Forecasting and Control, Francisco Holden-Day, New York.
  5. Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio statistics for autoregressive time series with a unit root, Econometrica, 49, 1057-1072. https://doi.org/10.2307/1912517
  6. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
  7. Fan, J. and Yao, Q. (2002). Nonlinear Time Series, Wiley, New York.
  8. Han, Y. W. (2003). Long memory property and central bank intervention during the currency crisis in the daily Korean won-us dollar exchange rates, The Journal of the Korean Economy, 4, 93-116.
  9. Jung, D. B. (2005). Detection and forecasting of exchange rate using time series analysis, Journal of Management Education, 143-151.
  10. Lee, S. Y. (2006). A study on the behavior of foreign exchange rate volatility, Korean Academy of International Business Management, 2006.11, 407-424.
  11. Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time series models, Biometrika, 65, 553-564. https://doi.org/10.1093/biomet/65.3.553
  12. Moon, C. K. (2010). Exchange rate volatility measures and GARCH model applications: Practical information processing approach, International Commerce and Information Review, 12, 99-121. https://doi.org/10.15798/kaici.12.1.201003.99
  13. Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1,1) model, Econometric Theory, 6, 318-334. https://doi.org/10.1017/S0266466600005296
  14. Tsay, R. S. (2005). Analysis of Financial Time Series, Wiley-interscience, New York.
  15. Zeileis, A., Kleiber, C., Kramer, W. and Hornik, K. (2003). Testing and dating of structural changes in practice, Computational Statistics & Data Analysis, 44, 109-123. https://doi.org/10.1016/S0167-9473(03)00030-6

Cited by

  1. Parameter estimation of linear function using VUS and HUM maximization vol.26, pp.6, 2015, https://doi.org/10.7465/jkdi.2015.26.6.1305
  2. Parameter estimation for the imbalanced credit scoring data using AUC maximization vol.29, pp.2, 2016, https://doi.org/10.5351/KJAS.2016.29.2.309
  3. Exploratory Data Analysis for Korean Stock Data with Recurrence Plots vol.26, pp.5, 2013, https://doi.org/10.5351/KJAS.2013.26.5.807
  4. Exploratory data analysis for Korean daily exchange rate data with recurrence plots vol.24, pp.6, 2013, https://doi.org/10.7465/jkdi.2013.24.6.1103