• Title/Summary/Keyword: IF steel

Search Result 883, Processing Time 0.031 seconds

An Experimental Study on Strength Properties of Concrete Using Blast-Furnace Slag Subjected to Freezing at Early Age (초기재령에서 동결을 받은 고로슬래그 콘크리트의 강도발현특성에 관한 실험적 연구)

  • Choi, Sung-Woo;Ban, Seong-Soo;Ryu, Deuk-Hyun;Choi, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.43-51
    • /
    • 2003
  • Recently, to consider financial and constructive aspect usage of Admixture such as Blast-Furnace Slag and Fly-Ash, are increased. Also the use of cold-weather-concrete is increased. Blast-Furnace Slag, a by-product of steel industry, have many advantage to reduce the heat of hydration, increase in ultimate strength and etc. But it also reduces early-age strength, so it is prevented from using of Blast-Furnace Slag at cold-weather-concrete. In this study, for the purpose of increasing usage of Blast-Furnace Slag at cold-weather-concrete, it is investigated the strength properties of concrete subjected to frost damage for the cause of early age curing. The factors of this experience to give early frost damaged were Freezing temperature(-1, -10, $-15^{\circ}C$), Early curing age(0, 12, 24, 48hour), Freezing times(0, 12, 24, 48hour). According to this study, if early curing is carried out before haying frost damage, the strength of concrete used admixture, subjected to frost damage, is recovered. And that properties are considered, the effect of using admixture like blast-furnace-slag, is very high

Inelastic Behavior of Beam-Column Joints Composed of RC Column and RS Beams (RC 기둥과 RS 보로 이루어진 보-기둥 접합부의 비탄성 거동)

  • 김욱종;윤성환;문정호;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.734-741
    • /
    • 2002
  • An experimental study was carried out for beam-column joints composed of RC column and RS beams. The purpose of this study is to examine the inelastic seismic behavior for the RC-RS connection. Two interior and one exterior beam-column assemblies with variable moment ratios were tested. Experimental results showed that strength and deformability except stiffness were satisfactory. It is considered that the lack of stiffness was due to the slipping of steel beam from RS beam. The behavioral characteristics of the RC-RS connection were evaluated according to the quideline suggested by Hawkins et al. Nominal strength at 5 % joint distortion was not satisfactory, but all the other requirements, such as strength preserving capability, energy dissipation, and initial stiffness and strength ratios after peak load were satisfactory compared with the guideline. Thus it was concluded that the RC-RS connections can maintain ductility with excellent energy-dissipating capacity if being provided with appropriate reinforced structural system such as RC core wall for the initial lateral stiffness.

Uplift Testing and Load-transfer Characteristics of Model Drilled Shafts in Compacted Weathered Granite Soils (화강풍화토 지반에 타설된 소형 현장 타설 말뚝의 인발시험 및 하중 전이 특성)

  • 임유진;서석현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.105-117
    • /
    • 2002
  • In the design of foundations for the super-structures such as transmission towers and oil-platforms, the foundations must be considered as a medium to resist cyclic tensile forces. In this study, the uplift capacity of the drilled shaft used as the medium resisting to this pattern of forces is investigated by performing cyclic uplift test of a small model-drilled shaft constructed in compacted granite soil in a steel chamber. In this test, the behavioral difference between a pile loaded on the top of the pile and a pile loaded at the bottom of the pile was investigated intensively. The load transfer curves obtained from the test were investigated by changing the confining pressure in the chamber. The load tests also included creep test and cyclic test. It is found from the tests that uplift capacity of the shaft loaded at the bottom is greater than that of the shaft loaded on the top of the pile. It is found also from the creep test that the pile loaded at the bottom was more stable than the shaft loaded on the top. If a pile loaded at the bottom is pre-tensioned, the pile will be most effective to the creep displacement. It is found also from the cyclic tests that apparent secant modulus obtained in a cycle of the load increases with the number of cycles.

Properties and Prediction Model for Ultra High Performance Fiber Reinforced Concrete (UHPFRC): (I) Evaluation of Setting and Shrinkage Characteristics and Tensile Behavior (초고성능 섬유보강 콘크리트(UHPFRC)의 재료 특성 및 예측모델: (I) 응결 및 수축 특성과 인장거동 평가)

  • Yoo, Doo-Yeol;Park, Jung-Jun;Kim, Sung-Wook;Yoon, Young-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.307-315
    • /
    • 2012
  • Recently, ultra high performance fiber reinforced concrete (UHPFRC) having over 180 MPa compressive strength and 10 MPa tensile strength has been developed in Korea. However, UHPFRC represents different material properties with normal concrete (NC) and conventional high performance concrete (HPC) such as a high early age autogenous shrinkage and a rapid dry on the surface, because it has a low water-binder ratio and high fineness admixtures without coarse aggregate. In this study, therefore, to propose suitable experimental methods and regulations, and to evaluate mechanical properties at a very early age for UHPFRC, setting, shrinkage and tensile tests were performed. From the setting test results, paraffin oil was an appropriate material to prevent drying effect on the surface, because if paraffin oil is applied on the surface, it can efficiently prevent the drying effect and does not disturb or catalyze the hydration of cement. From the ring-test results, it was defined that the shrinkage stress is generated at the time when the graph tendency of temperature and strain of inner steel ring is changed. By comparing with setting test result, the shrinkage stress was firstly occurred as the penetration resistance of 1.5 MPa was obtained, and it was about 0.6 and 2.1 hour faster than those of initial and final sets. So, the starting time of autogenous shrinkage measurement (time-zero) of UHPFRC was determined when the penetration resistance of 1.5 MPa was obtained. Finally, the tensile strength and elastic modulus of UHPFRC were measured from near initial setting time by using a very early age tensile test apparatus, and the prediction models for tensile strength and elastic modulus were proposed.

A Study on the Fabrication of Porous Sintered Materials for Glass Mold (유리 금형용 다공질 소결재의 제조에 관한 연구)

  • Jang Tae-Suk;Lim Tae-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.468-472
    • /
    • 2005
  • In order to prevent adhering of molten glass on a mold wall, the wall is swabbed with lubricant oil before forming. However, the swabbing process can be removed from the entire processes of the glass forming if the mold wall is made of a porous sintered material. The purpose of the present study is to manufacture a sintered material(having a sintered density of $85{\~}90\%$)which is the most appropriate into. plane material for a glass mold. For the research, SUS310L-based coarse powder (${\~}150{\mu}m$) and SUS420J2-based fine powder ($40{\~}50{\mu}m$) were used for the compact materials, and effects of compaction pressure and sintering condition(atmosphere, temperature) were investigated. The results obtained were as fellows. (1) By means of solid phase sintering, a desired sintering density could not be achieved in any case when using a 310L-based powder having a large particle size. (2) When sintering green compacts(compaction pressure of $2ton/cm^2$) in a commercial vacuum furnace(at $1300^{\circ}C$ for 2 hours), the sintered compacts had densities of $6.2g/cm^3(79\%)$ for 310L + 0.03$\%$B, $6.6g/cm^3 (86\%)$ for 420J2, $7.3g/cm^3(95\%)$ for 420J2+(0.03)$\%$B, and $7.6g/cm^3(99\%)$ for 420j2+(0.06)$\%$B, respectively. As a result, it is regarded that sintered compacts having a desired porosity may be achieved by vacuum sintering the 420J2-based powder (low pressure compaction) and the 310L+0.03$\%$B-based powder (high pressure compaction).

  • PDF

Analysis on the Shear Behavior of Existing Reinforced Concrete Frame Structures Infilled with L-Type Precast Wall Panel (L형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 골조 구조물의 전단 거동 분석)

  • Yu, Sung-Yong;Ju, Ho-Seong;Ha, Soo-Kyoung
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.105-117
    • /
    • 2015
  • The purpose of this study is to develop a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were experimentally performed on one unreinforced beam-column specimen and two reinforced specimens with L-type precast wall panels. The results were analyzed to find that the specimen with anchored connection experienced shear failure, while the other specimen with steel plate connection principally manifested flexural failure. The ultimate strength of the specimens was determined to be the weaker of the shear strength of top connection and flexural strength at the critical section of precast panel. In this setup of L-type panel specimens, if a push loading is applied to the reinforced concrete column on one side and push the precast concrete panel, a pull loading from upper shear connection is to be applied to the other side of the top shear connection of precast panel. Since the composite flexural behavior of the two members govern the total behavior during the push loading process, the ultimate horizontal resistance of this specimen was not directly influenced by shear strength at the top connection of precast panel. However, the RC column and PC wall panel member mainly exhibited non-composite behavior during the pull loading process. The ultimate horizontal resistance was directly influenced by the shear strength of top connection because the pull loading from the beam applied directly to the upper shear connection. The analytical result for the internal shear resistance at the connection pursuant to the anchor shear design of ACI 318M-11 Appendix-D except for the equation to predict the concrete breakout failure strength at the concrete side, principally agreed with the experimental result based on the elastic analysis of Midas-Zen by using the largest loading from experiment.

The Activation Plan of Resource Circulation of Copper through Analysis of Waste Resources Circulation Flow (동의 폐자원흐름분석을 통한 자원순환 활성화 방안)

  • Lee, Hi Sun;Woo, Jeong-Hun;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.23 no.2
    • /
    • pp.26-36
    • /
    • 2014
  • The materials flow of copper can be analyzed into up-stream and down-stream stages based on the literature survey. Discharge and recycling stages in the down-stream have been particularly analyzed through the field survey. The waste nickel resources circulation flow may conveniently be grouped into 4 stages discharge import, collection disuse, resource recovery and product production export, the resources mainly consist of copper scrap and stainless steel scrap in 2010. The resource circulation rate of 36.83% is obtained from the above flow. Various plans are therefore, suggested in each stage to increase resource circulation rate. At discharge import stage, it is suggested to consider this kind of waste as an important resources if it is appropriately classified in detail, basides applying quota tariff to this kind of waste. At collection disuse stage, the plan of stabilizing supply and demand is suggested through the improvement of bidding system. Resources professional cycling stage crushing and grinding companies foster coexistence between large and small plans and strategies were suggested. At product production export stage, the integrated approval is suggested approval for licensing to register units as waste-treating facilities instead of exempting registration under the present condition to activate recycling industries.

The Experimental Study on the Bond behavior of High strength concrete (고강도 콘크리트의 부착거동에 관한 실험적 연구)

  • Lee, Joon-Gu;Kim, Woo;Park, Kwang-Su;Kim, Dae-Joung;Lee, Wong-Chan;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.774-780
    • /
    • 1999
  • The study of bond behavior between concrete and rebar has been performed for a long time. On this study, we tried to analysed variation of bond behaviors quantitatively with varying the strength of concrete. Bond stress which observed below the neutral surface of beam and at connecting part of beam and column is affected by various bond parameters. Resistance of deformed bars which embedded in concrete to the pullout force is divided 1) chemical adhesive force 2) frictional force 3) mechanical resistance of ribs to the concrete and these horizontal components of resistance is being bond strength. We selected the most common and typical variable which is concrete strength among various variables. So we used two kinds of concrete strength like as 25MPa(NSC) and 65MPa(HSC). Tension Test was performed to verify how bond behavior varied with two kinds of concrete strength. Concentration of bond stress was observed at load-end commonly in Tension Test of the initial load stage. At this stage stress distribution was almost coincident at each strength. As tension load added, this stress distribution had difference gradually and movement of pick point of bond stress to free-end and central section was observed. This tendency was observed at first and moving speed was more fast in NSC. At the preceeding result the reason of this phenomenon is considered to discretion of chemical adhesion and local failure of concrete around rebar in load-end direction. Especially, when concrete strength was increased 2.6 times in tension test, ultimate bond strength was increased 1.45 times. In most recent used building codes, bond strength is proportioned to sqare root of concrete compressive strength but comparison of normalized ultimate bond strength was considered that the higher concrete strength is, the lower safety factor of bond strength is in each strength if we use existing building codes. In Tension Test, in case of initial tensile force state, steel tensile stress of central cross section is not different greatly at each strength but tensile force increasing, that of central cross section in NSC was increased remarkably. Namely, tensile force which was shared in concrete in HSC was far greater than that of concrete in NSC at central section.

  • PDF

A Study on the Preservation Method of Modern Registered Architectural Cultural Properties (근대건축 등록문화재의 보존 방안에 관한 연구)

  • Shin, Woong-Ju;Lee, Sang-Sun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.119-127
    • /
    • 2014
  • This study suggests institutional and methodological approaches for preservation of South Korea's registered cultural properties of modern architecture. The suggested approaches are as follows. First, in order to improve the current registration and preservation system for cultural properties, we need to employ both structure-based classification and style-based classification. Registration criteria for modern architecture properties need to include more detailed classification in terms of their structure: brick structure, steel concrete structure and post lintel structure. In terms of construction style, the properties need to be further classified into the western style, the traditional style and the Korean-western eclectic style. In addition, protection of registered cultural properties need to be achieved through legislation of a protection system. Second, while the current system sets out six methods for preservation of registered cultural properties of modern architecture, more specific preservation methods types and plans need to be continuously introduced. In particular, as for the method of partial preservation, the method needs to be further classified based on the usage of the relevant structure so as to allow for more diverse options. First, the 'Preservation by Interior Alteration' needs to be added to the category, where the exterior is preserved as it is and the interior is preserved through alteration. Also needs to be added the preservation method where the interior space is preserved as it is and the exterior space is altered, in case the finishing materials of the exterior has deteriorated. Third, if the records on registered cultural properties of modern architecture are to provide the functions of legal evidences regarding management of architectural cultural properties, sources of knowledge required for policy making and implementation and past management record for the future, each phase needs to be closely connected in an organic manner, and we need to establish a management system and plan that go beyond the relevant organizations. Fourth, in order to preserve South Korea's registered cultural properties of modern architecture in its original state, it is imperative to prepare separate criteria for registration of technicians with expertise on modern architecture, and train experts and technicians on modern architecture, which is distinguished from the traditional architecture.

A Study on the Fatigue Strength of the Welded Joints in Steel Structures(I) (강구조물(鋼構造物)의 용접연결부(鎔接連結部)의 피로강도(疲勞强度)에 관한 연구(研究)(I))

  • Park, Je Seon;Chang, Dong Il;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.161-175
    • /
    • 1985
  • The simplified method drawing the S-N curves in welding joints of the cover plates, the transverse stiffners and the gusset plates of the plate girders by calculation and its computer program without the direct fatigue tests, was established. And the method was applied to the Young- Dong Great Bridge, the 3 th Han River Bridge and the Kang Chon Bridge. Before this, SS 41, SS 50, SWS 50 and SWS 58 were selected, then the compact tension specimens were made by the use of these materials, the things welded by these materials transversely and the ones longitudinally to the crack propagation direction. The fatigue tests were performed by the use of these 'specimens, and the values of material constants c and m were obtained. By these results the followings were obtained. It was showed that the fatigue: strength in the case of the cover plates was much lower than in the case of other two cases. It was showed that, in the case of the cover plates with the cover plates thicker the fatigue strength was lower, but besides this the fatigue strength was not much influenced by the size of specimens. It was showed that in the difference from this the fatigue strength was sensitively influenced by the values of c and m. It was showed that in accordance with the lower values of c and m the fatigue strength was fairly higher, in accordance with the lower values of m the gradient of the S-N curves was abrupter. It was considered that if such data were accumulated continuously, in the near future the basic pattern used availably in providing the indicater of the fatigue design of the plate girders, and presuming the life-proof of the existing plate girders.

  • PDF