• Title/Summary/Keyword: IEEE802.11s

Search Result 475, Processing Time 0.026 seconds

A Handover Mechanism for IEEE 802.11 Wireless Networks using GPS and SNR (IEEE 802.11 무선 네트워크에서 GPS와 SNR을 이용한 핸드오버 메커니즘)

  • Yoon, In-Su;Chung, Sang-Hwa;Kim, Jeong-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.256-262
    • /
    • 2009
  • In this paper, we propose a mechanism for increasing the handover performance of the IEEE 802.11 link layer. The mechanism reduces the number of scanning channels by referencing an AP map based on GPS. Also, by monitoring the SNRs of the mobile node and neighbor APs, it enables the handover to maintain a higher SNR than a given threshold. The experimental results establish that it has a disconnection ratio of 6.7% and an average SNR of 16.8 dB. It is 4.1% lower disconnection ratio and 26% higher SNR than the mechanism used by MadWifi.

Materialize of the IEEE802.11 MAC for Wireless Local Area Network (Wireless Local Area Network 의 IEEE802.11 MAC 의 구현)

  • 홍두의;김언곤
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.177-181
    • /
    • 2004
  • It is as research about embodiment of MAC algorithm that is point of wireless LAN technology that is radio skill that is receiving present head of a family footlights, and embodied MAC that is algorithm that control modem Rf and host interface to level that existent common use radio AP and send-receive of high speed are available that embody function that is presented to IEEE 802.11 specs using H/W and S/W. When embody actually, tested module that embody actually using module modem and RF part because test is impossible after have common use product. Also, module that embody actually designed, and is expected to be utilized in radio LAN system construction of high speed late considering CRC and FCS ewer on channel.

  • PDF

Development of Embedded RFID System for Constructing ITS based on Wibro (ITS 구축용 RFID 교통카드 및 IEEE802.16 연동 RFID 시스템 개발)

  • Chang, Won-Tae;Kim, Tae-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2062-2068
    • /
    • 2008
  • In a u-City project in Busan, public transportation which is one of ITS has been considered. RFID system embedded with PXA255 chip and middleware capable of communicating a server side was developed. To perform data communication link with traffic card, developed system consists of wireless modules that are wireless LAN (IEEE802.11a/b and IEEE802.16. Using developed RFID system and middleware, it is expected that this system becomes a basic infrastructure to support a service of u-Traffic for u-City construction.

Design of Dual-Band WLAN Transmitter with Frequency Doubler (주파수 체배기를 이용한 이중대역 무선 송신부 설계)

  • Roh, Hee-Jung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.116-126
    • /
    • 2008
  • This paper describes the Dual-band WLAN transmitter with 2.4[GHz], 5[GHz]. Dual-band WLAN transmitter was designed at 2.4[GHz] and 5[GHz]. The Dual-band WLAN transmitter has a amplifier which operate at 2.4[GHz] and 5[GHz] frequency and two VCO(Voltage Controlled Oscillator) or VCO has a wide scope of frequency. these problem cause a size and a power consumption, The Dual-band WLAN transmitter module was proposed to solve these. the transmitter was designed to get output signals of IEEE 802.11a's 5.8[GHz] band signal using frequency multiplication way or to act a amplifier about the 2.4[GHz] band signal of IEEE 802.11b/g, according to inputed frequency and bias voltage that a eve using single transmission block. The output spectrum get the improved specification of ACPR of 4[dB], 6[dB], 16[dB] at +11[MHz], +20[MHz], +30[MHz] offset of center frequency compared to no linearization, was satisfied to transmit spectrum mask of IEEE 802.11a wireless Lan.

Improved MSI Based Scheduling and Admission Control Algorithm for IEEE 802.l1e Wireless LAN (IEEE 802.l1e 무선랜에서 MSI를 이용한 개선된 스케줄링 및 수락제어 알고리즘)

  • Yang, Geun-Hyuk;Ok, Chi-Young;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.10
    • /
    • pp.99-109
    • /
    • 2007
  • IEEE 802.lie is being proposed to improve QoS by IEEE 802.11 working group. HCCA (HCF Controlled Channel Access) a centralized polling based mechanism of IEEE 802.11e, needs a scheduling algorithm that decides on how the available radio resources are allocated to the polled STAs. In IEEE 802.l1e standard Reference Scheduler is presented. Reference Scheduler Polls all STAs in a polling list by the same interval that causes ineffectively frequent polling. It increases not only the overhead but it decreases the TXOP (Transmission Opportunity) utilization. In this paper, we propose the scheduling and admission control algorithm that poll stations depending on the MSI (Maximum Service Interval)o( stations to solve these shortcomings. In our proposed algorithm a station is polled by an interval close to its MSI, so polling overhead decrease and TXOP utilization increases than Reference Scheduler. Simulation results show that our algorithm outperforms Reference Scheduler. Our algorithm maintains higher aggregate throughput and services mere stations than Reference Scheduler.

Fixed point DSP Implementation of the IEEE 802.11a WLAN modem synchronizer (IEEE 802.11a 무선랜 모뎀 동기부의 고정 소수점 DSP 구현)

  • 정중현;이서구;정윤호;김재석;서정욱;최종찬
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.517-520
    • /
    • 2003
  • Orthogonal Frequency Division Multiplexing (OFDM) is a promising technology for high speed multimedia communication in a frequency selective multipath channel. In this paper, Software IPs for the synchronizer of IEEE 802.11a Wireless LAN system are designed and optimized for TI's TMS320C6201 fixed point DSP. As a result of the execution cycles of the target DSP for each functions of the system, an efficient HW/SW partitioning method can be considered.

  • PDF

Throughput Analysis of Power Management Scheme of IEEE 802.11 DCF in Wireless Ad Hoc Networks (무선 ad hoc 네트워크에서 IEEE 802.11의 power management scheme에 관한 성능 분석)

  • Lee, Kam-Rok;Kwon, Wook-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.61-62
    • /
    • 2006
  • In this paper, using Bianchi's model with channel idle probability we analyze performance of power management scheme of IEEE 802.11 DCF according to ATIM window size and number of nodes for wireless ad hoc networks. The analytical results show that, when the number of nodes is given, the selected ATIM window size limits the performance.

  • PDF

QoS improving method of Smart Grid Application using WMN based IEEE 802.11s (IEEE 802.11s기반 WMN을 사용한 Smart Grid Application의 QoS 성능향상 방안 연구)

  • Im, Eun Hye;Jung, Whoi Jin;Kim, Young Hyun;Kim, Byung Chul;Lee, Jae Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.11-23
    • /
    • 2014
  • Wireless Mesh Network(WMN) has drawn much attention due to easy deployment and good scalability. Recently, major power utilities have been focusing on R&D to apply WMN technology in Smart Grid Network. Smart Grid is an intelligent electrical power network that can maximize energy efficiency through bidirectional communication between utility providers and customers with ICT(Information Communication Technology). It is necessary to guarantee QoS of some important data in Smart Grid system such as real-time data delivery. In this paper, we suggest QoS enhancement method for WMN based Smart Grid system using IEEE 802.11s. We analyze Smart Grid Application characteristics and apply IEEE 802.11s WMN scheme for Smart Grid in domestic power communication system. Performance evaluation is progressed using NS-2 simulator implementing IEEE 802.11s. The simulation results show that the QoS enhancement scheme can guarantee stable bandwidth irrespective of traffic condition due to IEEE 802.11s reservation mechanism.

A Design of LDPC Decoder for IEEE 802.11n Wireless LAN (IEEE 802.11n 무선 랜 표준용 LDPC 복호기 설계)

  • Jung, Sang-Hyeok;Shin, Kyung-Wook
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.31-40
    • /
    • 2010
  • This paper describes a LDPC decoder for IEEE 802.11n wireless LAN standard. The designed processor supports parity check matrix for block length of 1,944 and code rate of 1/2 in IEEE 802.11n standard. To reduce hardware complexity, the min-sum algorithm and layered decoding architecture are adopted. A novel memory reduction technique suitable for min-sum algorithm was devised, and our design reduces memory size to 25% of conventional method. The LDPC decoder processor synthesized with a $0.35-{\mu}m$ CMOS cell library has 200,400 gates and memory of 19,400 bits, and the estimated throughput is about 135 Mbps at 80 MHz@2.5v. The designed processor is verified by FPGA implementation and BER evaluation to validate the usefulness as a LDPC decoder.

Exploring the Feasibility of Differentiating IEEE 802.15.4 Networks to Support Health-Care Systems

  • Shin, Youn-Soon;Lee, Kang-Woo;Ahn, Jong-Suk
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.132-141
    • /
    • 2011
  • IEEE 802.15.4 networks are a feasible platform candidate for connecting all health-care-related equipment dispersed across a hospital room to collect critical time-sensitive data about patient health state, such as the heart rate and blood pressure. To meet the quality of service requirements of health-care systems, this paper proposes a multi-priority queue system that differentiates between various types of frames. The effect of the proposed system on the average delay and throughput is explored herein. By employing different contention window parameters, as in IEEE 802.11e, this multi-queue system prioritizes frames on the basis of priority classes. Performance under both saturated and unsaturated traffic conditions was evaluated using a novel analytical model that comprehensively integrates two legacy models for 802.15.4 and 802.11e. To improve the accuracy, our model also accommodates the transmission retries and deferment algorithms that significantly affect the performance of IEEE 802.15.4. The multi-queue scheme is predicted to separate the average delay and throughput of two different classes by up to 48.4% and 46%, respectively, without wasting bandwidth. These outcomes imply that the multi-queue system should be employed in health-care systems for prompt allocation of synchronous channels and faster delivery of urgent information. The simulation results validate these model's predictions with a maximum deviation of 7.6%.